A new qualitative learning algorithm for feedforword neural networks is presented. In which weights are divided into rule types describing properties of weights and rule strength. The rule type of weights can be easily trained by back-propagation of superior contradiction. The qualitative learning theory is of many advantages, which lacked in traditional BP algorithm.The research provides necessary theory basis for the discovery of qualitative learning principle and the improvement of learning speed of neural networks. Some important researches on multi-mediea are also developed.
本项目提出和研究一种新颖的前馈神经网的定性学习算法,将权值用规则类型和规则强度表示,规则类型描述权值的性质;利用优势矛盾的反向传播快速学习各层权的规则类型。该定性学习理论具有传统的BP算法缺乏的许多优点如高速度和自适应能力。该研究为揭示突触类型的定性计算原理和提高神经网的学习速度提供必要的理论基础。.
{{i.achievement_title}}
数据更新时间:2023-05-31
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
一种改进的多目标正余弦优化算法
地震作用下岩羊村滑坡稳定性与失稳机制研究
多源数据驱动CNN-GRU模型的公交客流量分类预测
前馈神经网络的奇异学习动态研究
多层前馈神经网络信号放大的研究
前馈神经网络变结构理论研究
前馈神经网络学习算法的设计与分析