Aerospace vehicle is a new-generation space transportation system with horizontal take-off and Landing and reusable features. It has prominent performance such as hypersonic speed, super-maneuver and high safety, regarded as the main strategic orientation in aerospace industry. As the actuation system of flight altitude control, conventional servo system can no longer satisfy harsh requirements of high accuracy, high dynamic response and high reliability in aerospace vehicle application. In this proposal, a novel technical solution of torque motor based electric direct-drive servo system is proposed. Thus, the advantages of high dynamic response, high accuracy and redundancy configuration can be fully brought into play to deal with bottlenecks of traditional servo techniques in dynamic response and redundancy design. Main research contents include: (1) in-depth analysis of multi-channel torque motor working principle, setting up analytical modeling method of electromagnetics for compound array, conducting overview multi-objective optimization and analysis and dealing with the problems of torque density and dynamic response; (2) insensitive study of torque motor electric redundancy configuration methods under typical fault pattern, revealing the design rules between fault-tolerant control strategy and optimized output performance and improving system reliability; (3) investigating the influence of load disturbance and electromagnetic nonlinear features on servo accuracy, developing adaptive robust control research and enhancing servo accuracy intensively.
空天飞行器是可实现水平起降、重复使用的新一代天地往返系统,具有高马赫数、超机动、高安全性的突出性能,是航天领域重点突破的战略方向。作为飞行器姿态控制的执行机构,传统伺服系统已无法满足空天飞行器新背景下高精度、高动态、高可靠的需求。本项目创新性地提出了基于新原理力矩电机的电动直驱伺服系统技术方案,充分发挥电动直驱高动态、高精度的优势以及多通道力矩电机余度配置的特点,从根本上解决传统伺服动态响应及余度设计方面的技术瓶颈。主要研究内容为:(1)深入分析多通道力矩电机工作机理,开展复合阵列电磁解析建模研究,探索全局多目标电磁优化方法,解决转矩密度与动态特性设计难题;(2)深入研究典型故障模式下力矩电机电气余度配置方法,揭示容错控制最优化性能输出设计规律,提升系统可靠性;(3)探讨高超声速强负载扰动与电磁非线性对伺服精度的影响,开展鲁棒自适应伺服控制研究,有效提升复杂环境下伺服精度。
空天飞行器是可实现水平起降、重复使用的新一代天地往返系统,具有高马赫数、超机动、高安全性的突出性能,是航天领域重点突破的战略方向。作为飞行器姿态控制的执行机构,传统伺服系统已无法满足空天飞行器新背景下高精度、高动态、高可靠的需求。本项目创新性地提出了基于新原理力矩电机的电动直驱伺服系统技术方案,充分发挥电动直驱高动态、高精度的优势以及多通道力矩电机余度配置的特点,从根本上解决传统伺服系统动态响应及余度设计方面的技术瓶颈。开展的研究内容包括:1)深入分析多通道力矩电机工作机理,开展复合阵列电磁解析建模研究,探索全局多目标电磁优化方法,解决转矩密度与动态特性设计难题;2)深入研究典型故障模式下力矩电机电气余度配置方法,揭示容错控制最优化性能输出设计规律,提升系统可靠性;3)研究强负载扰动与电磁非线性对伺服精度影响规律,开展鲁棒自适应伺服控制研究,有效提升复杂环境下伺服精度。通过本项目研究,完成了复杂磁极阵列理论设计方法并开展了样机验证,研制了多通道冗余控制器,实现了非线性鲁棒控制率验证,气隙磁密提升约8%、系统任务可靠度0.9998、控制精度优于0.05度。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
高超声速飞行器用模块化集成式容错伺服系统研究
空天飞行器用新型轻质防热材料体系探索与设计研究
电动汽车新型横向磁通轮毂电机直驱系统研究
空天飞行器用C/SiC复合材料的低速冲击损伤特性与服役性能