Electrochemical analytical technology is promising for TNT detection with inherent high sensitivity, good selectivity, and strong anti-interference ability. The present state-of-art for electrochemical TNT detection is based on inorganic materials and mostly in aqueous phase, which largely prevents its utilization in field. Therefore, a novel sensing system, which realize electrochemical TNT detection in aqueous- and vapor-phase is still a great challenge. In this project, the proton-pumping protein (Bacteriorhodopsin, bR) and Plasmonic theory are introduced in the electrochemical detection of trace TNT, in order to construct bR/Ag-M (M=Au, Pd, Pt) plasmonic nanostructure-based hybrid nano-bio electrode with high sensitivity, good selectivity and strong stability for TNT sensing in aqueous phase, and realize electrochemical detection of trace TNT in vapor phase. We fabricate the Ag-M plasmonic nanostructure and investigate the effect of Ag-M plasmonic structure on the electrochemical TNT catalytic reaction and the electrochemical TNT sensing signal effectively enhanced by synergistic effect between the Ag-M plasmonic nanostructure and bR. On this basis, the electrode could be directly used as electrochemical monitoring and sensing platform for the construction of the nano chemical apparatus for TNT analysis in the open environment in order to achieve timely and on-site TNT detection. The project expands the research area of electrochemical TNT detection and will promote the development of a new generation of sensor and materials construction.
电化学传感技术灵敏度高、选择性好、抗干扰性强,是一种有前景的TNT检测技术。目前,电化学TNT检测体系多是无机材料且大都在液相中进行,限制了其实际应用。开发新型传感检测体系实现高效电化学液相和气相痕量TNT检测一直是巨大挑战。本项目拟将质子泵蛋白bR和Plasmonic理论引入电化学痕量TNT检测,构建Ag-M (M=Au, Pd, Pt) plasmonic结构,研究其对电化学催化TNT传感的影响机制,利用其与bR的协同作用有效增强电化学传感信号,构建高灵敏度、高选择性、高稳定性的新型bR/Ag-M plasmonic结构基杂化纳米生物电极液相TNT传感体系,同时实现电化学气相痕量TNT检测。基于此,新型电极可直接作为电化学TNT监测平台,实现化学器件的构筑,用于探讨开放环境中TNT的分析,实现及时、现场检测。本项目拓展了电化学TNT传感体系研究范围,为新一代传感器的发展起到积极作用。
电化学传感技术灵敏度高、选择性好、抗干扰性强,是一种有前景的传感检测技术。本项目紧密围绕贵金属plasmonic杂化纳米结构基新型电极用于痕量TNT电化学检测进行研究。本项目将Plasmonic理论引入电化学痕量TNT检测,构建Ag-M (M=Au, Pd, Pt) plasmonic结构,研究其对电化学催化传感的影响机制,有效增强电化学传感信号,构建高灵敏度、高选择性、高稳定性的新型plasmonic结构基杂化纳米电极传感检测体系。此新型电极可直接作为电化学TNT监测平台,实现化学器件的构筑,用于探讨开放环境中TNT的分析,实现及时、现场检测。本项目拓展了电化学TNT传感体系研究范围,为新一代传感器发展起到积极作用。.基于此,本项目发展了几种plasmonic结构基杂化纳米结构的制备技术,深入探讨了Ag-M plasmonic结构对电化学催化TNT等有毒物质传感检测的影响机制,相关工作得到了国际同行的认可,研究结果以论文和专利形式发表,其中发表六篇学术论文,平均影响因子>6,一篇影响因子10.733,另有在投文章两篇;设计了一种可用于恒温液气TNT传感的多功能电解池,已获专利授权四项,在实审专利一项;积极参加相关会议,交流学术,且与国内外相关课题组展开了互访和实质性合作交流,申请获批海外访学计划项目,争取到国家科技部项目一项;招收和在培养研究生五名。.
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于全模式全聚焦方法的裂纹超声成像定量检测
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
基于plasmonic杂化纳米结构的新型化学和生物传感研究
基于分子印记的电化学传感器对TNT的选择性痕量检测
纳米材料的功能化设计及其应用于生物分子识别检测的电化学研究
用于痕量元素检测的高灵敏荧光纳米粒子传感器