The future battles will face extremely complex operational environments. Researching complex operational environments on the effects of combat behavior and seeking effective countermeasures, for future victories, has important theoretical and realistic significance.. Characterizing the battlefield environments and analyzing the combat effectiveness of weapon systems in complex operational conditions has not been effectively solved.. This project is researching on Markov transfer representation in complex operational environments and the probability distribution of the number of killing targets. First, by taking the complex operational environments, which are changing with continuous time t, to downgrade to remain unchanged during a random time duration in a certain operational environment, then, transforming to another operational environment, and dividing a complex operational environment into N levels, we give the characterization and representation of the transformation law for the complex battle environments by applying Q matrix and based on Markov transfer theory and Q process theory. Second, by hierarchy analysis, we extract and purify the influences of operational effectiveness of the weapon systems to three mathematical indexes. According to the indexes, derivation and calculation for the composite probability distribution of the number to kill the targets in N mutual transferable complex operational environments are studied.. The research to the topic is of the originality, creativity and the feasibility.
未来作战将面对极其复杂的作战环境。研究复杂作战环境对作战行为与效果的影响,寻求有效对策,对于取得未来作战的胜利,具有重要的理论和现实意义。. 复杂作战条件的战场环境刻画、及在此环境下武器系统射击与作战效能的分析与评价一直没有得到有效的解决。. 本课题研究复杂作战环境的马尔科夫转移表征及毁伤目标数概率分布。一是通过把复杂作战环境随连续时间t的变化规律进行“降级”处理,认为在一段随机时间长度内作战环境保持不变,之后随机转移到另一作战环境,并把一个复杂作战环境划分成N个等级,基于马尔科夫转移理论与Q过程理论,运用Q矩阵刻画与表征了复杂作战环境的变化规律;二是基于层次分析,把复杂作战环境对武器系统射击与作战效能的影响归纳并提炼到三项数学指标上,依据该三项指标研究N个复杂作战环境相互转移下,“综合”毁伤目标数概率分布的推导与计算。. 本课题研究具有原创性、创新性与可行性。
未来作战将面对极其复杂的作战环境。课题研究复杂作战环境对作战行为与效果的影响,寻求有效对策,对于取得未来作战的胜利,具有重要的理论和现实意义。. 本课题研究了复杂作战环境的马尔科夫转移表征及毁伤目标数概率分布。首先通过把复杂作战环境随连续时间t的变化规律进行“降级”处理,认为在一段随机时间长度内作战环境保持不变,之后随机转移到另一作战环境,并把一个复杂作战环境划分成N个等级,基于马尔科夫转移理论与Q过程理论,运用Q矩阵刻画与表征了复杂作战环境的变化规律,并给出了示例;其次,研究了多个复杂作战环境相互转移下,武器装备“综合”作战效能评估问题,基于交错更新过程理论及全概率公式,导出了作战效能计算公式。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
基于SSVEP 直接脑控机器人方向和速度研究
中国参与全球价值链的环境效应分析
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
武器系统毁伤目标时间的概率分布表示形式
马尔科夫调节风险模型下的破产概率及相关问题
概率准则可控马尔科夫过程及其应用研究
实际系统纠缠态及环境非马尔科夫性的操控研究