In the hostile environment, the abrupt maneuver of the multiple aircrafts formation and the sharp change of the communication network are inevitaly. The existing formation control of multi-agent fail to resolve the following questions perfectly: 1, how to improve the viability of the communication network, and how to recover the connectivity if the communication network has been attacked. 2, how to design the formation strategy, and how to make the aircrafts track the trajectory which is produced by the formation strategy while the aircraft is a nonlinear and non-minimum-phase system. Therefore, the network is modeled based on the position proximity and its successive fault is modeled correspondingly in this project. Based on the analysis of these models, the strategy that improve the viability of the network is proposed. And the strategy that recover and maintain the connectivity of the network is proposed based on the position proximity set. Secondly, the method of stable system center and sliding mode control with finite-time convergence are used to resolve the trajectory tracking for the nonlinear and non-minimum-phase aircraft. The causal and robust solution can be obtained easily based on these methods. Finally, the framework of the distribute cooperative control is built, and the formation strategy is designed with the viability and connectivity of the communication are considered. The formation control of the multiple aircraft is accomplished by trajectory tracking. The safety of the multiple aircraft formation in the hostile environment is guaranteed by the prospective network design strategy, formation strategy and output tracking method of the nonlinear and non-minimum-phase system presented in this project.
在敌对环境中,多飞行器编队的大机动性和通信网络的强动态性都是不可避免的。现有编队控制方法都没能很好地解决以下问题:1、如何提高编队中通信网络的抗毁性,被击损后如何恢复连通;2、如何设计编队策略,且飞行器具有非最小相位特征时,如何按编队策略进行航迹机动跟踪。对此,本项目将建立位置近邻演化网络模型及其相继故障模型,进行理论分析并提出网络抗毁策略和位置近邻集连通恢复策略;其次,利用"稳定系统中心"方法和有限时间收敛滑模控制方法,解决非线性非最小相位飞行器航迹跟踪问题,以此降低求解复杂性,保证因果性和鲁棒性;最后,构建分布式协同控制框架,综合考虑网络抗毁策略和连通恢复策略,对编队策略进行设计,并利用航迹跟踪实现多飞行器编队控制。本项目预期提出的网络设计策略、编队策略和非最小相位系统输出跟踪方法将保障飞行器在敌对环境中安全编队飞行。
在敌对环境中,多飞行器编队的大机动性和通信网络的强动态性都是不可避免的。因而在敌对环境中,为了实现多非线性非最小相位飞行器的编队控制,需解决以下问题:1、如何提高编队中通信网络的抗毁性,被击损后如何恢复连通;2、如何设计编队策略,且飞行器具有非最小相位特征时,如何按编队策略进行航迹机动跟踪。. 对此,本项目主要研究了以下内容:1、通信网络建模及其抗毁性与连通性恢复策略;2、编队策略设计方法;3、多非线性非最小相位飞行器的姿态同步和航迹同步跟踪方法。. 针对这些研究内容,开展了以下研究工作:.1、建立了位置近邻演化网络模型及其相继故障模型,进行了理论分析并提出了网络抗毁策略和位置近邻集连通恢复策略;.2、利用输入—输出反馈线性化方法、"因果稳定逆"方法、不确定及干扰估计器和线性鲁棒控制方法等,解决了非线性非最小相位飞行器姿态及航迹跟踪问题,求解过程简单且保证了因果性和鲁棒性;.3、利用分层势场路径规划算法对编队策略进行了设计,并且在多种网络拓扑条件下,利用姿态及航迹跟踪实现了多飞行器编队控制;.4、将上述研究方法应用于多F-16飞机数字模型,进行了多架F-16飞机的航迹同步跟踪仿真验证;.5、将上述研究方法与3-DOF 直升机实验模型进行集成,针对多架3-DOF 直升机进行了姿态同步跟踪应用的仿真和实验验证。. 研究结果表明,本项目提出的网络设计策略、编队策略和非最小相位系统输出跟踪方法可保障飞行器在敌对环境中安全编队飞行。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
基于多模态信息特征融合的犯罪预测算法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
具有非最小相位特性的高超声速飞行器面向控制建模与控制策略研究
非最小相位高超声速飞行器多变量约束的预定性能控制研究
多旋翼飞行器安全编队飞行的共享控制方法研究
非线性非最小相位系统的鲁棒输出反馈跟踪控制