The main focus of this project is to develop printing dynamics model and experimental means, which enable an effective control of printing & ink dynamics in the field of functional printing as for instance printed electronics. The outcome of this project will form the ground for creating high-definition printed electronics, a functional material stack with well-defined material structure and size. The dynamics of printed functional ink is an instant (millisecond) yet very complicated process involving several physical and chemical processes that occur simultaneously or sequentially. This dynamic process is influenced by printing methods and printing settings such as speed of the print. It is also influenced by the physical and chemical properties of the materials involved, substrates and inks. Such as, surface topology,surface energy of the bare substrate and/or the already printed areas on which it will be printed; surface tension and viscosity of the ink, to mention some. A printed functional device is usually of a multilayer material stack, consisting of, for example, conductive and dielectrical materials. To gain an effective control of the material-deposition processes, including material compositions, thickness and sizes of each material layer (resolution and precision), is one of the major challenges that the printed electronics are facing today. In the envisaged project we will perform systematic studies to generate knowledge on how the performance of the printed electronics is affected by the materials properties or combinations of materials properties as well as printing technologies and printing settings. The methods we use will be a combination of theoretical simulations with advanced technologies for modifying material properties and further with advanced measurement/detecting technologies. We will also develop the route how to utilize nano materials, for instance, nanoclays, nano-fibrill cellulose,etc. to modify the surface properties for improved printability and controlled ink-deposition processes by means of pre-patterning the nano materials with flexography and/or inkjet technologies.
用印刷方式制备由纳米材料构筑、堆叠结构清晰、空间结构准确的多层材料结构是实现高质量功能材料印刷的关键所在。其核心在于对印刷动力学特征的准确描述以及有效操控。本项目的具体目标包括:建立适用于功能材料的印刷动力学模型;将印刷动力学理论模拟与先进的材料制备与检测技术相结合, 系统地研究印刷参数、承印表面(包括未印基材表面和已印表面)的物理和化学性能以及墨液的流变特性对印刷动力学的影响;将纳米材料(纳米粘土、纳米纤维素等)用印刷方式涂布到承印表面、实现对承印表面的局部改性(局部亲水、厌水性的调节);从而实现对功能印刷动力过程的有效操控。本项目的研究结果不仅对实现高印刷精度(高分辨率)、性能优异的印刷电子有重要科学意义;同时为降低印刷电子成本: 将纳米导电材料、有机导电材料与介电材料等直接印制到包装材料(例如包装纸版)表面,为实现印刷电子与色彩印刷一体化奠定坚实基础。
本项目的研究核心是建立适用于印刷电子的印刷动力学方法,实现对印刷动力学特征的准确描述及有效操控。印刷是印刷电子的重要环节也是当前印刷电子技术发展的瓶颈所在。在柔性材料表面实现精密多功能材料印刷以及大尺度印刷电子将极大地提高功能印刷(印刷电子)的生产率、原材料有效使用率;同时减少对环境的影响破坏。为开拓新的应用领域,比如生物传感器、智能包装等提供坚实的科学技术基础。.主要研究成果包括:.a).建立了适用于水基导电墨水的印刷动力学模型。将逼真的柔板印刷印鼓压力和喷墨液滴冲击力纳入印刷动力学模型之中。使定量模拟印版压力和喷墨液滴冲击力对导电墨水转印、吸收、渗透的过程成为可能。.b).在印刷动力学理论模拟指导下,取得了线宽均匀(宽度为10-13微米)的高质量导电线形,应用于制备微小压力传感器的制备。.c).提出并完善了用印刷(物理)和等离子体溅射(化学)方法对承印表面改性的原理和方法。实验证明,该方法简易可行、效果良好。.d).提出了定量研究纸板表面形貌粗糙度以及纸板吸收性对印刷质量影响的研究方法。在接触式(柔版、凹版、胶印)印刷过程中,纸板的表面粗糙度和吸收特性分别影响墨水的转印和吸收效果和导电油墨分布。.e).发现并诠释了纳米银导电墨水材料的表面电阻的随温度的可逆性变化原理并将此特征成功地应用于制备测温传感器。.f).开展了微接触印刷方式的动力学特征研究。分别采用线条结构和网格结构的印章转印银纳米粒子导电油墨, 分析了其转印过程, 并讨论了印章结构对网格图案性能的影响。.g).开展电致发光材料合成方面的工作。对所合成Anthracene-based Derivatives衍生物系列的物理化学进行表征和系统分析。探索该类材料在印刷电子传感器和智能包装等领域应有的可能性。.h).开展印刷电子和智能包装结合。探索用印刷电子技术制备传感器在物流、仓储朔源、和温度-时间历史纪录等方面的应有。.i).建立并拓展了国际交流渠道。国际间来/出访各三次。.j).已发表学术论文12篇,在审论文两篇。..
{{i.achievement_title}}
数据更新时间:2023-05-31
坚果破壳取仁与包装生产线控制系统设计
物联网中区块链技术的应用与挑战
敏感性水利工程社会稳定风险演化SD模型
人工智能技术在矿工不安全行为识别中的融合应用
粘土矿物参与微生物利用木质素形成矿物-菌体残留物的结构特征研究
面向多层卷对卷印刷电子设备的精密对准技术研究
基于材料浸润性的高精度喷墨印刷电子技术的研究
有机电子薄膜连续式微接触图形化印刷原理与工艺研究
印刷电子装备多层套准系统耦合建模与解耦控制研究