All-optical logic chip having a certain logic processing functions is an important basis for the realization of ultrahigh-speed and ultrawide-band information processing. Nowadays, there are two problems in the international research field of all-optical logic: First, it is difficult to realize on-chip cascaded complex all-optical logic devices because of the limitation of third-order optical nonlinear materials in the optical communication range. Second, it is difficult to realize two- and three-dimensional all-optical logic functional chips because of the lack of effective intra- and inter-chip optical interconnection approach. The method to realize new nanocomposite materials having ultrafast response and large third-order nonlinear susceptibility will be studied in this project. New realization mechanisms of on-chip complex all-optical logic devices will be studied by combining the advantages of dielectric microstructures (including photonic and zero-refractive index waveguide) controlling photon propagation and the field-enhancement of plasmonic nanostructures. The new approach to realization of intra-chip optical interconnection and constructing two-dimensional all-optical logic processing chip by using low-loss dielectric waveguides (including photon topological edge state waveguide having unidirectional propagation function) will be studied. The realization methods of inter-chip optical interconnection and three-dimensional all-optical logic processing chips by using photonic crystal coupled microcavities and bound states in the continuum in photonic crystal slabs will be studied. These results will be of importance for the realization of ultrahigh-speed information processing and optical computing.
具有逻辑处理功能的全光逻辑芯片是实现超高速超宽带信息处理基础。目前国际上全光逻辑领域存在两个难题:(1)受难以获得光通讯波段超快大三阶非线性材料这个材料瓶颈限制,难以实现片上级联复杂全光逻辑器件;(2)缺乏片内和片间光互连有效方法,难以实现二维和三维全光逻辑功能芯片。本项目探索实现光通讯波段超快大三阶非线性纳米复合材料新体系;将新型纳米复合材料高非线性响应优势、介电微结构(包括二维光子晶体微腔和全介电超材料分子)增强光子与物质相互作用优势、金属微结构LSP场增强优势三者相结合,探索实现片上复杂逻辑器件新机理;探索利用低损耗介电光波导(包括零折射率材料构造的光波导)来连接各个逻辑功能器件实现片上光互连、并构造二维全光逻辑处理芯片新途径;探索利用光子晶体耦合微腔和光子晶体平板连续束缚态实现片间光互连、以及构造三维全光逻辑功能芯片新方法。这些成果对实现超高速信息处理和光计算将具有重要意义。
具有逻辑处理功能的全光逻辑芯片是实现超高速超宽带信息处理基础。本项目探索金属介电微结构三维全光逻辑功能芯片的实现途径。提出将材料色散与结构色散相结合、以及表面等离激元模式与介电函数近零模式的强耦合这两种实现光通讯波段超宽带超快巨大非线性响应新方法,制备出ITO复合微纳结构材料、金超表面/多晶ITO复合材料等多种纳米复合材料体系,在光通讯波段的非线性折射率达到10-11~10-8 cm2/W的数量级,非线性响应时间达到400fs~650fs;制备出硅基多功能全光逻辑运算模块,不同波长信号从正反两个方向入射时分别实现不同的逻辑运算功能,能耗降低到10fJ/bit;制备出基于反向设计的硅基二进制全光四则运算芯片,实验上实现了1比特“加”、“减”、“乘”、“除”四则运算的功能,响应时间达到百飞秒量级,阈值能耗10fJ/bit;制备出以耦合短的硅波导的Y型硅波导作为神经元构成的硅基光学卷积神经网络芯片,实验实现了多种逻辑门运算、半加运算和求解超越方程复杂数学运算的功能,能耗降低到50fJ/bit,信息处理速率达到1Tbit/s;提出了一种基于可重构光子神经网络的实值对称矩阵本征值求解方案,制备出可重构硅基局部连接光学神经网络,对2×2实值对称矩阵特征值的求解任务,实验测量的准确率为78.8%;利用硅耦合谐振环阵列光子拓扑绝缘体的两个拓扑边界态作为两个赝自旋态,通过四波混频非线性频率变换实验实现了拓扑保护的多光子纠缠光源;实验实现了硅光子晶体拓扑绝缘体彩虹囚禁器件;提出研究非厄密畴壁光子拓扑绝缘体的有效哈密顿量新方法,并发现非厄密耦合谐振环阵列光子拓扑绝缘体的拓扑相变规律;利用高时空分辨光发射电子显微镜揭示了金纳米链一维表面等离激元拓扑绝缘体的拓扑边界态的时域动力学演化规律。这些成果对于超快低能耗光子信息处理芯片的研究具有重要推动作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
微纳尺度下全光逻辑功能研究
介电薄膜材料的微结构与光传播
介电/金属系统中微结构和光电性质
全光逻辑单元器件用InP基功能材料研究