The typical atmospheric corrosion environments of the South China Sea, featuring high salinity, high humidity and high temperature, propose rigorous requirements toward the corrosion resistance of aluminum materials. Recent years, as one of the potential newly-developing corrosion protection materials, the favorable anticorrosion properties of superhydrophobic surfaces draw much attention of researchers. To date, however, the fundamental research of the fabrication and applications of superhydrophobic aluminum surfaces for atmospheric corrosion protection of the South China Sea has not been in sufficient concern. The responsive behavior, corrosion protection, disabler and corrosion initiation mechanisms of superhydrophobic surfaces under the corrosion environments of the South China Sea are unclear. In addition, the mechanical performance of superhydrophobic surface needs urgent improvement. Therefore, this project selects aluminum materials as the object of study and puts forward the hybridization of inorganic nanoparticles and organosilanes via modified Stober method combined with dip-coating/spray-coating technique, achieving the regulation and control of surface wettability. This project will grasp the rule and structure-function relationship of surface microstructures, hybridization components, wettability and wear-corrosion resistance and finally develop mechanically stable anticorrosion superhydrophobic surfaces. The project will understand the rules between superhydrophobic surfaces and multiple corrosion factors through the typical atmospheric corrosion environments simulation of the South China Sea, revealing the protection-failure mechanisms and proposing the corresponding models. Meanwhile, the corrosion initiation behaviors of superhydrophobic surfaces will be systematically studied and discussed. This project will not only provide ideas for fabricating mechanically stable anticorrosion superhydrophobic surfaces with strengthened functions, but also provide theoretical basis for developing cognize of corrosion protection of the South China Sea and potential applications. This project possesses significantly scientific value and is of great importance for engineering practice.
南海高盐、高湿、高热大气腐蚀环境对涉海铝材的耐蚀性提出了严苛要求。作为近年新兴的腐蚀防护材料之一,超疏水表面良好的耐蚀性引起了研究人员高度关注。然而,目前关于铝材表面超疏水化及其在南海大气腐蚀防护中应用的基础研究未得到足够重视,超疏水表面在南海腐蚀环境中的响应行为、功能防护与失效机理及腐蚀萌生规律尚不明确,且其机械稳定性亟待改善。因此,本项目选取铝材为研究对象,拟采用改进的Stober法将有机硅烷与无机纳米粒子杂化实现表面润湿性调控,构建耐磨蚀铝基超疏水表面并建立微观结构、杂化组分与性能间的构效关系;模拟典型南海腐蚀条件,理清多重腐蚀因子与超疏水表面间的作用规律,揭示其腐蚀防护机理和功能失效机制并建立相应模型,并初步探讨其腐蚀萌生初期行为。本项目为耐磨蚀超疏水表面的构建和功能强化提供设计思路,为发展超疏水表面的南海腐蚀防护认知和潜在应用提供理论依据,具有重要的科学价值和工程应用意义。
海洋环境中的使役材料存在严峻的腐蚀与生物污损问题,而仿生超疏水表界面材料的设计与开发为海洋功能防护提供了创新性思路。本项目围绕铝材表面润湿调控、特殊浸润性表界面设计及其防护机制展开系统研究,采用化学刻蚀、阳极氧化、物理沉积、水热处理、低表面分子接枝、有机硅水解缩合等方法,设计构建了一系列具有特殊浸润性的表界面材料并结合多种现代测试表征技术手段,研究了其在海洋环境中的多功能防护行为,阐明了其防护机制、功能提升机理与相关理论模型。主要研究内容及重要结果包括:①利用微纳构筑与分子修饰相结合设计构建了铝基超疏水表面并掌握了其结构-组分-润湿性间的相互作用关系,其中阳极氧化法与PDMS+蜡烛灰沉积获得的超疏水表面展现出优异的抗腐蚀和机械稳定性;②采用改进的Stober法将有机硅烷与无机纳米粒子杂化实现表面润湿性调控,通过喷涂技术获得了具有超疏水、超双疏和超疏热液的防护涂层,展现出优异的自清洁、低黏附力、长效抗腐蚀与耐高温等功能特性;③在模拟高湿度环境下的盐粒潮解研究发现,超疏水表面的氯化钠盐粒可吸湿潮解成盐溶液球形液滴,而在模拟高盐雾腐蚀加速环境下的盐粒沉积与微液滴粘附则会引发截留的空气层坍塌进而导致疏水性能失效与腐蚀萌生;④设计构建了仿猪笼草超滑表面并首次系统对比超滑表面与仿荷叶超疏水表面之间的功能差异性和适用性,提出液体灌注超滑表面具有更加优异的长效抗腐蚀和润滑减摩性能,并阐明了其功能增强机理。在项目三年执行期内,顺利完成了本项目的研究任务和预期目标。本项目的开展丰富了功能表界面材料在海洋领域应用的理论认知,为特殊浸润性防护新材料新技术的设计与开发提供了重要数据积累和关键技术支撑,具有重要科学意义与实用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
农超对接模式中利益分配问题研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
甘肃省粗颗粒盐渍土易溶盐含量、电导率与粒径的相关性分析
超疏水铝基表面的构建、结构及防覆冰和抗腐蚀行为研究
南海大气环境中耐候钢微观界面的初期腐蚀行为及机理
超疏水表面在海洋大气腐蚀防护中应用的基础研究
基于液滴自弹跳效应的超疏水表面海洋大气腐蚀防护性能与机制研究