To meet the great need for the lubricating and wear-resistant materials used under extreme working condition characterized in high temperature, in the present project we will use laser surface engineering technology and choose some appropriate reaction systems to carry out some systemic researches on the preparation of self-lubricating and wear-resistant coating used under a wide temperature range from room temperature to extremely high temperature (900-1200 oC). The controllability of in-situ synthesis of reinforcements and lubricants through the physical and chemical reactions between the active elements under high energy laser and tribology processes will be investigated. The compatibility, matching and interaction between the component and substrate or binding phase will be studied. The effects of preparing processes and heat-treatment conditions on the performance and the effects of the structure and composition on the mechanical and tribological properties of the coating will be studied. Especially the study on the tribological behavior of the high-temperature self-lubricating coating under extremely high temperature conditions will be done. The project aims at revealing the lubrication and wear mechanism and obtaining design principles and preparation technology of laser in-situ synthesis of high-temperature self-lubricating composite coatings with independent intellectual property rights and providing theoretical basis and technical support in designing and preparing materials for the practical application in the field of high-temperature lubrication for our country.
针对以高温为典型特征的极限工作状态下的润滑和耐磨材料的迫切需求,本项目利用激光表面工程技术,选用合适的反应生成体系,通过涂层结构优化设计,开展激光原位合成制备室温至极端高温(900℃-1200℃)宽温域的高温自润滑耐磨涂层的系统研究。利用活性元素在高能量激光作用下的物理化学反应以及涂层界面元素在摩擦过程中的摩擦化学反应,研究原位反应生成增强相和润滑相的可控性。研究各组元与基体、粘结相的相容性、匹配性及相互作用,考察制备工艺和热处理条件对涂层材料性能的影响。研究涂层的组成结构对涂层材料的力学性能、摩擦学性能的影响,深入研究极端高温条件下高温自润滑涂层的高温摩擦学行为规律,揭示润滑机理和磨损失效机制,获得具有自主知识产权的激光原位合成制备高温自润滑复合涂层材料的组分设计原则和制备工艺技术,为我国在高温润滑耐磨领域的实际应用提供材料设计制备的理论依据和技术支持。
高新技术产业的迅速发展对相关运动部件在超高温苛刻工况条件下服役的润滑耐磨和抗氧化性能提出了更高的要求,本项目通过反应生成体系和涂层结构的优化设计,开展了激光原位合成制备室温至高温(900-1200℃)宽温域内的高温自润滑耐磨涂层的摩擦学行为规律研究,揭示了其润滑机理和磨损失效机制。获得的主要结果如下:(1)利用激光原位制备了NiAl金属间化合物涂层,考察了涂层材料在室温至1000℃宽温域范围内的摩擦学性能和磨损机制;(2)以Ag/Cu为中低温润滑相,添加不同氧化物(V2O5,MoO3,B2O3)或金属和硫化物制备了NiCrAlY基自润滑耐磨激光熔覆层,涂层在800℃左右时由于高温摩擦化学反应中层状双金属氧化物(Ag3VO4、AgVO3、Ag2MoO4、ZnMoO4、CuMoO3)和氧化物NiO、Cr2O3、B2O3的生成而表现出优异的高温自润滑性能;(3)利用多层熔覆技术通过调控组分含量逐步过渡制备了含高熔点金属Ta 的宽温域自润滑激光熔覆层;(4)分别以较高高温热硬性的钴铬铝钇基合金和良好高温抗氧化性的NiCrAlY为基质相,通过组分优化复配制备了高温自润滑抗氧化激光熔覆层材料,满足了高温极端苛刻条件(900℃-1200℃)对材料润滑耐磨和抗氧化性能的使用需求。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
硬件木马:关键问题研究进展及新动向
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
钢筋混凝土带翼缘剪力墙破坏机理研究
滚动直线导轨副静刚度试验装置设计
高温自润滑耐磨陶瓷的材料设计及其磨损机理研究
纳米自润滑相对HEM-PM304高温自润滑涂层特性的影响
高温自润滑涂层微观组织优化与性能调控机制研究
原位镍基高温自润滑复合厚涂层的制备和摩擦学性能研究