Hypersonic vehicles have important strategic significance and high application values. Load simulator is a key test equipment for hypersonic vehicle's actuator system in hardware-in-the-loop-simulation, which provides multidimensional force or torque for the objects to be loaded. Therefore, load simulator should have such performances as high precision, fast load tracking performance, strong anti-interference ability, and good stability, etc. We study principally the innovational mechanism configuration principle, system modelling, and control algorithms of dual-motor driving electric load simulator. A design method of dual-motor driving electric load simulator is explored, the loading system and loaded object are linked by permanent magnet eddy current transmission mechanism, and the real-time cooperative motion loading mechanism of of dual-motor is analyzed based on the motion-constraint consistency principle. As a typical application of the passive torque servo system in the engineering, load simulator has to solve the complex force/torque coupling control problem in the loading process. In order to reduce the influence of nonlinear disturbance and superfluous torque, and to improve load tracking performance and robustness, an intelligent control strategy is proposed, which includes disturbance observer with neural network and repetitive control, to improve control precision, dynamic characteristics and stability. Torque measurement equations of the load simulator are developed using mechanism modeling and system identification. The superfluous torque is estimated by means of nonlinear optimization method, which can provid reliable information for the torque compensation motor. Finally, the integrated design of load simulator should be developed based on the innovational mechanism configuration, and the theoretical results will be verified by means of the real prototype. As a result, it is expected that new theories and methods obtained from the project can provide the theoretical basis and technical support for designing an electric load simulator of hypersonic vehicles actuator.
高超声速飞行器具有重要的战略意义和极高的应用价值,电动负载模拟器作为高超声速飞行器舵机半实物仿真测试的关键设备,应满足加载精度高、动态响应快、抗干扰能力强、稳定性好等要求。项目力图从机构构型综合创新着手,突破常规的单电机加载结构,提出一种双电机驱动的负载模拟器设计方法,加载系统与承载对象之间采用永磁涡流传动机构,在运动-约束一致性原则下探索力矩加载电机与力矩补偿电机协同运动的机构原理设计;提出了神经网络扰动观测器与重复控制结合的智能控制策略,实现降低非线性扰动和抑制多余力矩的目的;通过机理建模与系统辨识构建负载模拟器的力矩测量方程,进行多余力矩估计的非线性优化研究,为力矩补偿电机提供可靠信息。最后,研制具有高动态特性的电动负载模拟器试验样机,进行性能测试,验证理论成果。 项目研究成果可为高超声速飞行器舵机负载模拟器的设计提供理论依据和技术支撑。
高超声速飞行器具有重要的战略意义和极高的应用价值。舵机是高超声速飞行器进行飞行姿态控制的执行机构,高超声速飞行器在空中按预定的轨迹飞行需靠控制舵面的摆动来随时校正航向,舵面在摆动过程中会受到各种负载力矩的作用。负载模拟器是一种可产生多种形式力矩的被动式力伺服控制系统,来模拟飞行器舵机在飞行中所承受的空气动力力矩载荷谱,检测舵机驱动系统的技术性能,在飞行器舵机的半实物仿真测试中起着重要作用。工程应用广泛的电动负载模拟器作为高超声速飞行器舵机半实物仿真测试的关键设备,要能对指令转矩快速、精确跟踪,以及对承载对象运动引起的多余力矩有效抑制和补偿,应满足加载精度高、动态响应快、频带宽、稳定性好等要求。. 针对高超声速飞行器舵机电动负载模拟器的设计要求,项目突破单电机加载机构,提出一种双电机驱动的负载模拟器设计方法,探索了力矩加载电机与力矩补偿电机协同运动的机构原理,设计并验证了双电机驱动的有效性;综合考虑了电动负载模拟器和舵机的特性,建立了电动负载模拟器的综合数学模型,利用系统的实测数据对所建综合模型参数进行了修正;提出了基于加性分解框架的跟踪控制方法简化非线性系统的设计,采用前馈补偿与模型参考自适应控制算法相结合控制方法对多余力矩进行了主动补偿,改善了系统的动态性能;分析了系统非线性影响因素,利用基于实测非线性参数的模型验证了基于PID算法的摩擦非线性补偿控制可以有效提高阶跃响应稳态误差;采用逆间隙补偿法,对由间隙引起的超调、多余振荡、死区以及平顶现象有较好的补偿效果;同时提高系统增益有效改善刚度非线性给系统带来的不良影响;通过设计、仿真并校核各零部件,编写控制算法及系统测试软件,试制了试验样机。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于被动变阻尼装置高层结构风振控制效果对比分析
新产品脱销等待时间对顾客抱怨行为的影响:基于有调节的双中介模型
机电控制无级变速器执行机构动态响应特性仿真研究
汽车侧倾运动安全主动悬架LQG控制器设计方法
基于自适应干扰估测器的协作机器人关节速度波动抑制方法
高超声速飞行器极端热环境下结构动态特性识别与模型修正方法研究
基于智能模糊动态特征模型的高超声速飞行器先进控制
高超声速飞行器动态面自适应反演及复合优化控制
高超声速飞行器气动热/热辐射特性及其抑制机理研究