Wheel/rail noise is one of the most important noise sources which are induced during high-speed train operation. However, due to the complexity of wheel/rail dynamic interactions and sound transmission properties, the reduction of wheel/rail vibration and noise has been an open issue of both academic and industry, which stands in front of high-speed train’s development and need to be solved imminently. Under this situation, this project targets to provide systematically efficient solutions for the reduction of wheel/rail vibration and noise. The research will mainly focus on two aspects, i.e., the noise reduction at the source, and that at the transmission path. To achieve this goal, the research will be based on the theoretical analysis, such as the vehicle-track coupling dynamics theory and acoustic radiation theory, numerical simulation, field- and lab-experiments, etc. For the aspect of noise reduction at the source, the wheel/rail nonlinear vibration and noise model in time domain will be developed. This model is then used to investigate the generation mechanism of wheel/rail vibration and noise of high-speed trains. For the aspect of noise reduction from the path, in order to investigate the transmission mechanisms of bogie and car-body under the high-speed wheel/rail vibration and noise excitations, and to find the critical vibration energy transfer paths of structure, both the structure-borne sound multi-level transfer path analysis model of bogie and the sound transmission property analysis model of vehicle’s extruded aluminum structure are set up simultaneously. The research results will not only improve the ride comfort of high-speed trains, but also complete the fundamental theory and research system of high-speed train system dynamics. Moreover, the relative results will provide a solid theoretical basis for the optimal design of Chinese high-speed train.
轮轨噪声是高速列车运行中产生的最主要噪声源之一,然而,由于轮轨间噪声产生及传递机理的极端复杂性,使得高速列车轮轨减振降噪成为目前高速铁路发展中亟待解决的重要学术和工程技术难题。鉴于此,本项目拟综合运用车辆-轨道耦合动力学理论与声辐射理论,结合数值分析、现场试验和室内试验,首先建立时域下高速轮轨非线性振动噪声预测模型,揭示高速列车轮轨振动噪声产生机制;进而建立高速列车转向架系统多级结构传声路径分析模型和车体铝型材结构的传声分析模型,研究高速轮轨振动噪声在转向架和车体上的传递机制,明确关键传递路径及其关键部件。在此基础上,从高速轮轨振动噪声产生机制及传递路径等方面,综合性提出高速列车减振降噪的有效措施。研究成果对于提升高速列车运行品质、完善高速列车系统动力学基础理论和研究体系具有重要的理论和工程意义,并可为我国高速列车优化设计提供直接的理论指导和借鉴。
轮轨噪声是高速列车运行中产生的最主要噪声源之一,然而,由于轮轨间噪声产生及传递机理的极端复杂性,使得高速列车轮轨减振降噪成为目前高速铁路发展中亟待解决的重要学术和工程技术难题。鉴于此,本项目开展了以下主要研究工作:1)建立时域下高速轮轨非线性振动噪声预测模型,探明了高速轮轨振动噪声的关键影响因素,揭示了高速轮轨振动噪声产生机制,提出了高速轮轨噪声控制措施;2)建立高速列车转向架系统多级结构传声路径分析模型,明确了高速转向架系统主要传声路径;3)建立了高速列车车体铝型材结构的传声分析模型,探明了型材和车窗隔声机理;4)基于项目研究成果,以时速350公里“复兴号”高速动车组为研究对象,开展了低噪声正向设计,使车内外噪声达到国际标准,与现有动车组相比,车内噪声降低约3-5dBA。研究成果为我国高速列车和城市轨道交通列车优化设计提供直接的理论指导和借鉴,同时为中国高铁走出去奠定了坚实基础。.项目执行期间,共发表学术论文95篇,其中SCI论文28篇,EI论文25篇。授权发明专利12项,申请发明专利17项,授权实用新型专利6项。参加国际会议共41人次,其中特邀报告4次。培养已毕业博士4人,硕士33人。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
混采地震数据高效高精度分离处理方法研究进展
柔性基、柔性铰空间机器人基于状态观测的改进模糊免疫混合控制及抑振研究
分层地质类材料靶体抗超高速侵彻模型实验
后掠叶片锯齿尾缘宽频噪声实验研究
面向高速列车减振降噪的车体结构振动与声学特性研究
阻尼减振降噪理论与应用研究
高速列车轮轨弹塑性滚动接触理论和数值方法的研究
复合式双层板结构减振降噪及吸声的设计理论与方法研究