Label free optical biosensing is of great significance to various scientific fields, e. g., fundamental research in life science, drug screening assay and medicine design, timely diagnosis for disease and early treatment on cancer, etc. Recently, the label free biosensors based on graphene plasmonic are emerged to be the research frontiers and hotspots for both nanophotonics and biomedicine. However, the critical challenge, which preventing the practical application of the graphene biosensor, was the low efficiency of the inverse solution for optical parameters. The reasons resulted from two aspects. For one hand, the experimental spectrum needed to be tested for many times as the curves fitting procedure requested. For another, the simulated spectrum during the curves fitting procedure were suffered from slow computing speed and convergence performance. In this project, we address this challenge by the methodology of combing the novel design of graphene biosensor, and the renew and upgrade of the algorithms for electromagnetic simulation. Consequently, our research efforts focus on the following studies, which are the sensing and detection of the protein molecules by a graphene multiple-band plasmonic biosensor, and the high-efficiency and fast-convergence simulation of graphene optical response by the spectral element method with a surface current density boundary condition. By the implement of this project, we will establish an innovative technique of label free optical biosensing, which enables the fast and accurate sensing of the protein optical parameters. This project can provide a powerful approach for the research of life science fields, e. g., molecular dynamics of protein, tumor studies and medical diagnosis. It has a great meaning for the practical application of the label free optical biosensing.
无标记传感检测在生命科学基础研究、药物筛选与新药开发、疾病及时诊断与癌症早期医疗等领域具备重要的研究意义。基于石墨烯等离激元的无标记生物传感器是当前纳米光子学和生物医学的前沿热点。然而,石墨烯传感器的实用化面临的重要挑战是光学参数反演求解的效率低下,具体表现在曲线拟合所需的实验测试光谱次数较多,以及理论仿真光谱的计算速度和收敛性较慢。本项目将通过器件创新设计,和电磁仿真算法更新升级相结合的研究方法,重点研究如下内容:石墨烯多波带等离激元传感器对蛋白质分子的传感检测,以及谱元方法结合表面电流密度边界条件对石墨烯光学响应的高效、快收敛的仿真计算。本项目将建立一套无标记光学传感新方法,实现蛋白质分子光学参数的快速、精准的传感检测,为蛋白质分子动力学、肿瘤研究、医疗诊断等生命科学领域提供强有力的研究手段,促进生物光子学无标记传感技术的实用化。
无标记传感检测在生命科学基础研究、药物筛选与新药开发、疾病及时诊断与癌症早期医疗等领域具备重要的研究意义。本项目针对石墨烯传感器实用化所面临的重要挑战,通过器件创新设计,和电磁仿真算法更新升级相结合的研究方法,建立一套无标记光学传感新方法,实现蛋白质分子光学参数的快速、精准的传感检测。具体研究成果在器件创新设计方面,开发了一种新颖超构表面传感器,以及基于它的传感检测方法;研究了电磁调控与增强的共性关键技术,并成功应用于传感、多波带器件、非线性纳米光子学等领域。具体研究成果在电磁仿真算法方面,开发了具备各向异性表面电流密度边界条件的谱元方法,以及谱元数值模式匹配法,为计算纳米光子学提供了高效、高精度、快收敛的计算电磁正演方法。基于本项目的研究和资助,在主流SCI学术期刊发表相关学术论文11篇,其中,JCR中科院一区1篇(负责人为通讯作者,本项目为第一标注),JCR二区8篇;参加国际学术会议,并作口头报告2次;国家发明专利授权1项,公开1项,申请中1项;培养4名硕士生,其中1人的学位论文荣获“福建省优秀硕士学位论文”;2人升学攻读博士学位。项目将持续开展后续研究,为相关学科领域、工程应用和人才培养做出贡献。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
石墨烯等离激元分子可调谐电磁性质的研究
基于悬空石墨烯结构的长程传输等离激元及其性能调控研究
基于石墨烯表面等离激元的亚辐射模式的研究
石墨烯动态调控手性表面等离激元结构研究