As one of the most important members in the porous material family, porous polymeric material has attracted much attention recently. Thus, many new approaches or modified ways based on traditional methods have been developed to prepare polymeric materials with porous structure. Each approach has its own merits, but also shows limits in various applications. In this project, thermodynamic and kinetic aspects concerning the interfacial localization of nanoparticles with various kinds of topological structure will be studied in an emulsion system using rheological tools, aiming at revealing mechanism of formation and evolution of bicontinuous morphology of emulsion in the presence of nanoparticles, and developing emulsion and suspension rheology. Then the bicontinuous microemulsion system stabilized by solid nanoparticles will be prepared as the template with controllable domain size for following polymerization to finally obtain porous polymers. The effects of those interfacial-localized nanoparticles and their percolation network structure on the reaction kinetics and phase separation level will be explored in detail, aiming at obtaining porous polymers with controllable pore structure and, further fabricating functionalized polymer alloy materials. The main objective of this work is to develop preparation ways of porous polymers and, to extend the approach to fabricate functional polymer alloy with high performance.
作为多孔材料中最重要的一类,聚合物基多孔材料是当今材料领域的研究热点。除了传统的制备方法外,近年来围绕聚合物基多孔材料制备的新途径或是改进的方法不断涌现。每一种制备方法都有其优点,但也存在一定的缺陷或局限性。本项目拟首先通过流变学的方法研究拓扑结构不同的纳米粒子在乳液体系中界面选择性分布的热力学和动力学影响因素,揭示双连续相形态形成和演化的过程,在发展乳液和悬浮体系流变学的同时,制备出纳米粒子稳定界面的双连续相微乳液,并从工艺上实现双连续相相畴可控的目标;随后以此双连续相微乳液为模板,制备多孔聚合物复合材料;在此基础上明确界面分布的纳米粒子及其逾渗网络形成的散热通道对聚合反应动力学和相分离的影响,实现相分离和孔结构可控的目标,最终获得一系列不同结构且功能化的多孔材料以及聚合物合金材料;由此发展多孔聚合物材料的制备方法,并拓展高性能及功能化的聚合物合金材料的制备途径。
作为多孔材料中最重要的一类,聚合物基多孔材料是当今材料领域的研究热点。除了传统的制备方法外,近年来围绕聚合物基多孔材料制备的新途径或是改进的方法不断涌现。每一种制备方法都有其优点,但也存在一定的缺陷或局限性。本项目首先通过流变学的方法研究了拓扑结构不同的纳米粒子在乳液体系中界面选择性分布的热力学和动力学影响因素,揭示了双连续相形态形成和演化的过程,在此基础上制备出采用纳米粒子稳定界面的双连续相微乳液,并从工艺上实现了双连续相相畴可控的目标;随后以此双连续相微乳液为模板,制备出了多孔聚合物复合材料;进而明确了界面分布的纳米粒子及其逾渗网络形成的散热通道对聚合反应动力学和相分离的影响,实现了相分离和孔结构可控的目标,最终获得一系列不同结构且功能化的多孔材料以及聚合物合金材料;本项目研究成果为多孔聚合物材料的制备方法的拓展,以及高性能及功能化的聚合物合金材料的制备提供了新的途径。
{{i.achievement_title}}
数据更新时间:2023-05-31
多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法
基于MCPF算法的列车组合定位应用研究
武功山山地草甸主要群落类型高光谱特征
基于自适应干扰估测器的协作机器人关节速度波动抑制方法
LTNE条件下界面对流传热系数对部分填充多孔介质通道传热特性的影响
微纳米结构Ti/Mg双连续相复合材料的可控制备及力学性能研究
生物可降解高分子超多孔导电材料的制备及形态控制
光活性纳米多孔复合材料的可控制备及抗肿瘤性能研究
原位自生增强相准连续网状分布铝基复合材料的制备及强韧化机理