Previous studies have shown that mechanical stimulation could not only promote chondrogenic differentiation of BMSCs, but also increase the biomechanical properties of tissue-engineered cartilage, whereas the mechanical signal transduction is still unclear. Detection of Differentially Expressed Proteins in the BMSCs under pressure by SILAC showed that the expression of TSP-2 in BMSCs was significantly increased. A review of the evidence suggests that TSP-2 can promote chondrogenic differentiation of BMSCs, inhibit the ECM degradation by binding MMPs. Co-IP performed that TSP-2 and Integrin β1 are interacting proteins. In view of the above evidence, we hypothesized that the mechanotransduction of TSP-2 depended on Integrin β1 pathways. Meanwhile, TSP-2 could improve the mechanical properties of neocartilage by binding MMPs. In order to verify the above hypothesis, we intend to regulate the expression of TSP-2 by lentivirus-mediated overexpression and interference, to clarify the function of TSP-2 in chondrogenic differentiation. Antibody microarray technology may be used to identify the downstream signaling pathways. We plan to construct an animal model of condyle cartilage defects to confirm the function of TSP-2 in the repairment of condyle cartilage defect. The implementation of this project will provide us new experimental basis and theoretical support for the construction of tissue-engineered cartilage with better mechanical properties.
力学刺激可促进BMSCs向软骨细胞分化,提升组织工程软骨力学性能,但其信号转导机制尚不明确。采用SILAC技术对压力作用后BMSCs中差异表达蛋白分析发现,TSP-2表达显著上调。而TSP-2既可促进BMSCs向软骨细胞分化,又可与MMPs结合抑制细胞外基质降解。CO-IP分析发现,TSP-2与力学感应分子Integrin β1存在相互作用。据此课题组推测:TSP-2可能通过与Integrin β1结合转导力学信号,同时与MMPs结合,抑制基质降解,提高新生软骨的力学性能。为验证上述假设,课题组拟采用慢病毒干扰或过表达TSP-2,明确其在BMSCs软骨向分化及基质合成中的作用;结合抗体芯片等技术,探索TSP-2下游力学信号转导机制;构建髁突软骨缺损模型,在体证实TSP-2在软骨缺损修复中的作用和机制。课题的完成有望阐明TSP-2在力学刺激促BMSCs软骨向分化及基质合成中的作用及分子机制。
力可促进BMSCs向软骨细胞分化,但其力学信号转导机制尚不完全明确。课题组前期采用SILAC分析压力加载前后BMSCs细胞内的差异蛋白表达,发现血小板反应蛋白-2(Thrombospondin-2, TSP-2)表达显著上调,且在压力和(或)TSP-2多肽作用后,软骨标志基因的表达升高更为明显,提示TSP-2可增强力促BMSCs成软骨分化的潜能。但TSP-2促BMSCs软骨向分化的具体分子机制及力学信号转导通路还有待探索。为解决上述问题,我们构建了SD大鼠咬合力剥夺模型,在体检测咬合力对大鼠髁突软骨中TSP-2表达的影响;我们又开展了体外实验,在静态或加载周期性流体静压力条件下采用TSP-2多肽刺激或使用慢病毒干扰TSP-2的表达,检测了细胞活性、细胞成团能力及软骨分化水平;采用抗体芯片技术筛选压力与TSP-2下游信号通路;并对下游NF-κB、整合素/FAK信号通路在力和TSP-2作用下促BMSCs成软骨分化中的作用机制进行了探索。结果发现,正常咬合力可以促进大鼠髁突软骨细胞中TSP-2的表达,剥夺咬合力后软骨组织退化且TSP-2表达下调;体外研究证实,压力可促进BMSCs中表达TSP-2,且力与TSP-2可协同作用,调控BMSCs向成软骨方向分化;慢病毒干扰TSP-2后,由力诱导的BMSCs成软骨分化受到抑制;抗体芯片检测发现,在力与TSP-2作用下,NF-κB、整合素/FAK信号通路相关蛋白磷酸化水平显著改变;进一步研究发现,力与TSP-2可通过协同作用调控NF-κB P65入核,促进BMSCs成软骨分化;此外,力作用下TSP-2通过与整合素结合,抑制黏着班的形成,最终促进BMSCs成软骨分化。综上所述,力可促进软骨组织中TSP-2的表达,且TSP-2的表达与软骨组织结构稳态维持密切相关;体外研究表明,TSP-2在软骨组织中的表达与力学刺激下的软骨分化呈正相关;TSP-2通过周期性静水压力刺激后的自分泌正反馈环路促进BMSCs软骨向分化;提示TSP-2与力的协同作用促进NF-κB P65发生核转位,同时TSP-2抑制整合素活性及细胞黏附作用,促进BMSCs成软骨向分化。本课题阐明了TSP-2在力学刺激促BMSCs软骨向分化中的作用及其力学信号转导机制,为构建力学性能良好的组织工程软骨提供实验支持和理论依据,有望推动组织工程软骨在关节软骨缺损修复中的应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
粗颗粒土的静止土压力系数非线性分析与计算方法
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
核基质蛋白MINT在软骨细胞分化中的调控作用及其机制
软骨调节素调控BMSCs骨和软骨双向分化平衡的研究
基于骨软骨界层结构在体重建成骨和成软骨微环境诱导BMSCs定向分化实验研究
骨髓基质细胞成软骨分化最佳诱导因素的探讨