The new magneto-dielectric ferrite materials with matching permeability and permittivity as well as low losses have very prominent advantages in miniaturization and high performance of antennas. However, up to now this novel materials are mainly limited in a very narrow frequency band under ultra-high frequency (UHF), and it has become a bottleneck problem to expand their applications to wider and higher frequency range. Anisotropic planar Z-type hexaferrites (Co2Z) are ideal candidates for magneto-dielectric applications since they have concomitant high permeability and high cut-off frequency. Therefore, in this project, we will make a systemic and deep research on the mechanism, methods and effective solutions for the control of UHF magneto-dielectric properties in anisotropic Co2Z hexaferrite. Firstly, the experimental schemes will be built based on deep analyses for the influence mechanism of magneto-dielectric characteristics. Then, we will investigate the effects of ions doping, nanocrystalline addition and preparation processes on the microstructures, crystal-phase composition and magneto-dielectric properties of anisotropic Co2Z hexaferrites. After that, we will find out valid ways to adjust and control the permeability and permittivity, reduce magnetic and dielectric losses, and obtain excellent magneto-dielectric materials for UHF applications. Finally, we will design and develop antennas based on the produced magneto-dielectric materials to verify the effects of the materials. We aim to establish some theoretical and practical foundations for the development of the novel electromagnetic material.
具有等磁介、低损耗特性的新型铁氧体磁介材料在实现天线等器件的小型化和高性能上面具有十分突出的优势,但当前这类电子材料主要局限于超高频以下的很窄频域,向更高频率范围应用的拓展是其一直面临的瓶颈难题。因此,本项目以兼具高磁导率和高应用频率的各向异性平面Z型 (Co2Z) 六角铁氧体材料体系为研究对象,系统深入的开展超高频段磁介性能调控机理、方法以及可行性调控方案的研究。首先,对磁介性能的内在影响机理进行深入分析,指导调控方案的建立和实际铁氧体材料的研制;其次,系统研究离子取代、纳米晶植入方法及工艺条件对制备材料微观结构、晶相组成以及宏观磁介性能的影响规律,掌握可控调节高频磁导率和介电常数以及降低其磁、介损耗的有效途径,研制出适用于超高频段的高性能铁氧体磁介材料。最后,再基于研制的磁介材料进行天线的设计与研制,充分验证其应用效能,为促进这种新型电磁材料的应用和发展奠定一定的理论和实践基础。
具有等磁介、低损耗特性的新型铁氧体磁介材料在实现天线等器件的小型化和高性能上面具有十分突出的优势,但当前这类电子材料主要局限于超高频以下的很窄频域,向更高频率范围应用的拓展是其一直面临的瓶颈难题。因此,本项目以兼具高磁导率和高应用频率的平面Z型 (Co2Z) 六铁氧体、NiZnCo铁氧体等材料体系为主要研究对象,系统深入的开展超高频段磁介性能调控机理、方法以及可行性调控方案的研究。首先,对磁介性能的内在影响机理进行深入分析,指导调控方案的建立和实际铁氧体材料的研制;其次,系统研究离子取代、纳米晶植入方法及工艺条件对制备材料微观结构、晶相组成以及宏观磁介性能的影响规律,掌握可控调节高频磁导率和介电常数以及降低其磁、介损耗的有效途径,研制出适用于超高频段的高性能铁氧体磁介材料。最后,再基于研制的磁介材料进行天线的设计与研制,充分验证其应用效能,为促进这种新型电磁材料的应用和发展奠定一定的理论和实践基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
甘肃省粗颗粒盐渍土易溶盐含量、电导率与粒径的相关性分析
倒装SRAM 型FPGA 单粒子效应防护设计验证
黏粒阳离子交换量估测模型的优化研究
3-羟基糖取代对槲皮素与人血清蛋白相互作用的影响
基于Z型六角铁氧体的织构化磁介电复合材料制备与高频性能研究
平面Z型六角铁氧体薄膜GHz高频磁性研究
平面各向异性六角铁氧体基的小型化宽带多频天线
Co基Z型六角铁氧体薄膜室温巨磁电耦合效应研究