As a kind of artificial bone materials, hydroxyapatite (HA) has restricted its applications as load-bearing bones because of its poor mechanical properties especially brittleness. Carbon fibers (CF) are used as a kind of ideal reinforcing material to enhance HA. Because of oxidation damage during sintering process of CF caused by HA dehydroxylation and decomposition, and coefficient of thermal expansion mismatch between CF and HA matrix, the mechanical properties of composites did not reach the level of theoretical prediction. To solve the problems above, the research intends to prepare C-Si-Al gradient coatings on CF surface using magnetron sputtering. After that, Al coating in the C-Si-Al gradient coatings would be transformed into the nano porous Al2O3 by combining anodic oxidation and heat treatment. Nano HA would grow by embedding in porous Al2O3 by hydrothermal synthesis method by solution immersing nano pores. Gradient protective coating during sintering process–nano HA coatings would be obtained. Design and controllable preparation of CF/gradient protective coating during sintering process–nano HA/HA composites would be achieved. The research plans to investigate the process and mechanism oxidation of CF. The preparation technology, formation and protection mechanism of protective coating during sintering process–nano HA coatings on the CF is to be investigated. It would be studied that the bonding characteristics of interface, between CF, coatings, and HA matrix, relationship between microstructure and properties of composites, enhancing and toughening mechanism of composites. The biological properties, and response characteristic of bone tissue of the composites would be studied in vitro and in experimental animals. This research would lay a theoretical basis for the preparation and clinical application of artificial bone composites.
羟基磷灰石(HA)人工骨材料力学性能较差特别是脆性大限制了其在承重部位的应用。碳纤维(CF)是HA的理想增强体之一,但烧结过程中HA的脱羟与分解导致CF氧化损坏、CF与HA之间热膨胀系数不匹配使CF的增强增韧效果远未达到预测水平。针对以上问题,本项目拟在CF表面磁控溅射制备C-Si-Al梯度涂层后,采用阳极氧化及热处理将Al层转化为纳米多孔Al2O3,通过纳米孔渗入水热合成法在孔内嵌入生长纳米HA,形成梯度烧结保护-纳米HA涂层。设计、可控制备CF/烧结保护-纳米HA/HA复合材料。项目系统分析烧结过程中CF氧化损坏过程及机制,研究涂层的制备工艺、形成过程和烧结保护机理;研究CF、涂层和HA基体之间的界面结合特性,复合材料微观结构和力学性能关系及强韧机理;揭示复合材料在体外、动物体内的生物学性能和骨组织响应特性。该研究有望为具有生物、力学相容性的人工骨复合材料的制备和临床应用奠定理论基础。
羟基磷灰石(HA)人工骨材料力学性能较差特别是脆性大限制了其在承重部位的应用。碳纤维(CF)是HA的理想增强体之一,但烧结过程中HA的脱羟与分解导致CF氧化损坏、CF与HA之间热膨胀系数不匹配使CF的增强增韧效果远未达到预测水平。针对以上问题,本项目主要研究内容和结果如下:.在CF表面磁控溅射制备C-Si-Al涂层后,采用阳极氧化及热处理将Al层转化为Al2O3并在其表面制备纳米HA涂层,形成烧结保护-纳米HA涂层。获得性能优异的烧结保护涂层、烧结保护-纳米HA涂层制备工艺。揭示了烧结保护涂层对CF的保护机理和Al2O3-纳米HA复合涂层的形成机理。.阐明所构筑涂层在CF表面与HA基体之间的作用机制、复合材料微观结构和性能的关系。确定具有优异力学性能复合材料的CF分布状态。掌握涂层对CF(单丝、复丝)力学性能的影响规律和CF与涂层之间的界面结合特性。获得综合力学性能良好的CF/烧结保护涂层/HA复合材料、CF/烧结保护-纳米HA/HA复合材料及其强韧机理和涂层的烧结保护机制。通过烧结保护和生物活性涂层的构建,充分发挥CF增强增韧效果,提升了复合材料的力学性能。.采用水热合成法制备了纳米Mg掺杂HA(Mg-HA)粉体,在较低温度下烧结制备了CF/Mg-HA复合材料;以CF为造孔剂,构建了兼具优异力学性能和生物学性能的定向微通道Mg-HA陶瓷,发展了均匀分布的定向微通道强韧陶瓷新方法;研发了连续纤维增强陶瓷基人工骨的3D打印装置,实现连续CF/HA骨支架的3D打印。.研究了涂层CF/HA复合材料、CF/Mg-HA复合材料、定向微通道Mg-HA陶瓷、连续CF/HA骨支架诱导磷灰石形成能力、体外细胞和体内骨组织响应特性。所获得的HA基生物陶瓷具有良好的生物活性和成骨诱导能力。项目研究为具有优良生物、力学相容性的人工骨复合材料和HA基生物陶瓷的制备和临床应用奠定了理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
基于二维材料的自旋-轨道矩研究进展
HA-Ti复合材料个体人骨仿生设计及激光选区烧结成形的基础研究
HA涂层Mg-Zn-Sr合金生物材料的应用基础研究
含镁、锌HA涂层材料对骨质疏松状态下植入体骨整合的影响
医用钛合金骨植入体表面激光合金化Ag-HA复合纳米涂层的抗菌及生物相容性研究