Seismic numerical modeling is an important basis for seismic exploration and seismology. It is also an indispensable and effective tools for seismic exploration and seismology, and thus become a research hotspot in these fields. Because of the complexity of earth medium, its physical space distribution is heterogeneous with a certain randomness, therefore, the traditional modeling methods, which are effective for continuous medium, are out of ability to deal with local characteristics of the earth medium due to limited computational resource. By introducing length scale of inhomogeneous medium, and combining asymptotic expansion method with spectral element method, we'll give so-called upscaling method based on deriving a series of control equations to replace original equations. The method is presented to compute the effective behaviour of the wavefield within similar unit-cell, and the information of the micro scale is mapped on the macro scale, thus, the original heterogeneous problem can be solved. The upscaling method is constructed for non-periodic medium, and would be validated from the aspects of mathematical theory and numerical experiments. In this project we present a upscaling method to build the effective medium and equations allowing to homogenize the small scales of the original medium without losing the accuracy of the wavefield computation, and achieve the fundamental purpose of the development for fast simulation of seismic wave in inhomogeneous medium. The method is also developed to provide theory and methodology basis for large-scale forward modeling of seismic wave propagation and for wave equation inversion and imaging.
地震数值模拟是地震勘探和地震学的重要基础,也是地震勘探、天然地震中不可或缺、非常有效的手段,更是地震波传播理论研究备受关注的前沿热点课题之一。因地球介质的复杂性,其物性的空间分布是非均匀的、具有一定的随机性,传统的针对连续介质的模拟方法受计算资源的限制,已不能有效模拟非均匀介质的局部特性。本项目拟针对地震波场建立相对的非均匀介质尺度的量化,通过将一点的场值展开成为细观尺度的小参数渐近级数,并与谱元法结合,建立一系列控制方程,发展模型的粗化方法,并给出粗化准则。项目通过对单胞问题的求解,把细观尺度上的信息,映射到宏观尺度上,从而可在宏观尺度上求解原问题。该粗化方法针对非周期模型介质,拟从理论和数值实验两方面进行论证说明,使得模拟既可节省计算时间和存储,又能保证计算精度,达到发展非均匀复杂介质中地震波场快速模拟算法之目的,为大尺度地震波传播正演模拟和基于波动方程的反演成像奠定理论和方法基础。
地震数值模拟是地震勘探和地震学的重要基础,也是地震勘探、天然地震中不可或缺、非常有效的手段,更是地震波传播理论研究备受关注的前沿热点课题之一。因地球介质的复杂性,其物性的空间分布是非均匀的、具有一定的随机性,传统的针对连续介质的模拟方法受计算资源的限制,已不能有效模拟非均匀介质的局部特性。.本项目针对周期/梯度介质的非均匀性,采用Mori-Tanaka均匀化格式,发展了均匀化方法,并与谱元法结合,给出了地震波模拟的多尺度粗化方法,并运用到一般的非均材料计算中。项目通过对单胞问题的求解,把细观尺度上的信息,映射到宏观尺度上,从而可在宏观尺度上求解原问题。用等效介质模拟既可节省计算时间和存储,又能保证计算精度,达到发展非均匀复杂介质中地震波场快速模拟算法之目的。本项目还在含裂隙介质中的地震波传播、超奇异积分的解法、高效的拟解析离散正演模拟方法、算法的并行化等方面做了研究,为大尺度地震波传播正演模拟和基于波动方程的反演成像奠定理论和方法基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
中国参与全球价值链的环境效应分析
山区场地地震动数值模拟方法研究
含粗骨料的钢管超高性能混凝土高温劣化机理与细观数值模拟方法
复杂场地地震动数值模拟方法及应用研究
长周期地震动盆地效应表征模型的数值模拟