多复变函数空间中心逼近定理的研究

基本信息
批准号:11126246
项目类别:数学天元基金项目
资助金额:3.00
负责人:陈英伟
学科分类:
依托单位:河北经贸大学
批准年份:2011
结题年份:2012
起止时间:2012-01-01 - 2012-12-31
项目状态: 已结题
项目参与者:赵秀恒,王志军,王亚辉
关键词:
光滑模Jackson定理Qp空间K泛函Bernstein定理
结项摘要

逼近论的研究已有悠久的历史,特别在实函数及单复变函数已形成较为丰富的理论,但对于多复变全纯函数空间的逼近结果较少。本项目就是以此为切入点,将成熟逼近理论和多复变函数论相结合,进行多复变全纯函数空间中心逼近定理等核心问题的研究。. 本项目主要是在多复变的各个全纯函数空间如Qp、Hardy、Bergman等空间中用最简单的函数(如代数多项式、三角多项式等)来逼近空间函数,重点是研究函数空间的中心逼近定理(即函数性质与多项式逼近程度的相互关系):Jackson定理和Bernstein定理,并进一步研究相关的逼近问题如空间中函数类的逼近等价刻画、高阶逼近、K-泛函理论等。.本项目的研究富有开创性,有助于促进和丰富函数论尤其是多复变全纯函数空间理论研究。同时在信号处理、计算数学、工程数学等方面也有广泛的应用前景。

项目摘要

本项目是将成熟的逼近论和多复变函数论相结合,围绕多复变全纯函数空间中心逼近定理等核心的逼近理论展开研究。. 本项目取得了许多创新性成果:第一,在多复变的多个全纯函数空间如Qp、新引入的Qμ和Aμ空间中的多项式函数逼近的中心逼近定理(Jackson定理和Bernstein定理),并进一步得到了空间中Lipschitz和Zygmund函数类的逼近等价刻画,特别是在Bernstein定理研究中取得了突破性的进展;第二,Bergman空间中的Hardy-Littlewood 定理;第三, C^n中Dirichlet函数类的Fej\'{e}r算子的逼近;第四,Qp空间中利用K-泛函的强逆不等式等逼近理论。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction

Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction

DOI:10.1080/15287394.2018.1502561
发表时间:2018
2

涡度相关技术及其在陆地生态系统通量研究中的应用

涡度相关技术及其在陆地生态系统通量研究中的应用

DOI:10.17521/cjpe.2019.0351
发表时间:2020
3

环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例

环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例

DOI:10.11821/dlyj020190689
发表时间:2020
4

基于多模态信息特征融合的犯罪预测算法研究

基于多模态信息特征融合的犯罪预测算法研究

DOI:
发表时间:2018
5

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

DOI:
发表时间:2020

陈英伟的其他基金

相似国自然基金

1

多复变函数空间与算子理论

批准号:10671141
批准年份:2006
负责人:周泽华
学科分类:A0202
资助金额:21.00
项目类别:面上项目
2

多复变函数空间上的算子理论

批准号:11271332
批准年份:2012
负责人:于涛
学科分类:A0207
资助金额:60.00
项目类别:面上项目
3

多复变函数空间上几个问题研究

批准号:11571104
批准年份:2015
负责人:张学军
学科分类:A0202
资助金额:50.00
项目类别:面上项目
4

多复变函数空间上的算子及应用

批准号:10771064
批准年份:2007
负责人:胡璋剑
学科分类:A0202
资助金额:25.00
项目类别:面上项目