In this project, a new generating system by low-speed wind power is proposed. The basic structure, operating mechanism, as well as the control method, will be analyized in depth. The hybrid magnetic suspension system with low-power consumption is proposed to reduce frictional resistance and increase the flexibility of system's stiffness to restrain autooscillation. The direct drive structure of the switched reluctance generator is excepted to reduce transmission losses and increase the maximum power point tracking speed. An novel automatic navigation wind energy collect device is adopted to improve the utilization of wind power. This research mainly forcuses on the system models, dynamic decoupling and compound intelligent control under complex working conditions. To meet the demands of wide-speed-range generating and more smoothly running torque, a power control method of switched reluctance generator based on multi-model switching is proposed, the smoother torque predicting strategies and the forms of carrying out distributed type adaptive intelligent sliding-mode control are researched. The excitation mechanism, nature characterization and active restrain method of the vertical axis wind turbine main spindle vibration are analyzied. Aimed to coordinate the stability and tracking accuracy of the machine, the intelligent control method of the maximum wind power tracking is discussed, which is based on optimal speed tracking under stability monitoring decision and power disturbances control algorithm. Both the flow field structures under the influence of the automatic navigation wind energy collect device itself and the coupling effect for other components of the proposed wind turbine are studied to explore its mechanism and optimization methods. This project achieves some progress on basic design theroies and control methods of the new hybrid magnetic levitated vertical axis wind turbine with the switched reluctance generator. Thus it is of great academic significance and practical value.
本项目研究一种新型低风速发电系统的基本结构和运行机理及其控制方法,拟采用低功耗的混合磁悬浮支承减少摩擦阻力,增加系统刚度柔性抑制自振;采用开关磁阻发电机直驱结构降低传动损耗,提高最大风功率跟踪速度;采用自导航聚风增效装置提高风能利用率。重点研究多态工况下的系统建模、动态解耦及复合智能控制策略。针对宽转速发电和转矩平滑调控需求,提出基于多模型切换的开关磁阻发电机输出功率控制方法,研究设计平滑转矩预估监督策略和分治型自适应智能滑模控制的实现形式;分析主轴自振的诱发机理、表征特性及其主动避振方法;以协调整机稳定性和跟踪精度为目标,探讨基于稳定监督决策的最优转速跟踪结合功率扰动法的最大风功率跟踪智能控制方法;研究自导航聚风增效装置的流场结构及与垂直轴风力机间的耦合效应,探索其机理和优化方法。本项研究可给出新型垂直轴混合磁悬浮开关磁阻风力发电机的基础设计理论与控制方法,具有重要学术意义和实用价值。
我国风力资源丰富地区仅占全国面积的8%,为了有效利用其它92%地区的风力资源,迫切需要开发低风速风力发电机。本项目研究一种新型适合低风速启动风力发电系统的基本结构和运行机理及其控制方法。.利用CFD软件FLUENT,基于S-A湍流模型和滑移网格技术对自导航聚风增效装置和NACA0015翼型的流场结构及与垂直轴风力机间的耦合效应进行分析,揭示了该翼型升力系数、阻力系数随马赫数、雷诺数的变化规律。应用ANSYS和SolidWorks工具对混合磁悬浮支承进行结构设计与建模,探索了主轴自振的诱发机理、表征特性及其主动避振方法。设计了基于干扰估计的离散积分滑模磁悬浮支承控制器。研究了外部干扰项的离散迭代估计方法,实现了混合磁悬浮的支承的防振颤自调整功能和高稳定悬浮驱动控制。设计了新型12/10极开关磁阻风力发电机,采用直接瞬时转矩内环发电控制技术,平滑发电过程。研究了全风速发电多模态模型与多模型切换功率控制。分析了在额定风速以内MPPT运行模式下,基于最优TSR跟踪原理的MPPT控制策略和自适应积分滑模控制器。控制器采用基于最佳转速跟踪偏差的积分型滑模面函数结构,利用ESO对风力机实时机械转矩进行估计,引入非线性幂次组合函数和转速跟踪偏差负反馈环节,构造变速趋近律,使得切换增益具有自适应调整的特性。针对在额定风速以上的恒功率运行模式,控制器采用滑模幂指数趋近律设计方法,并将切换函数幅值作为负反馈量,引入切换增益的调节机制,以协调系统跟踪的快速性指标与抑制超调的能力;通过在滑模控制律中引入控制输入量的一阶积分项,形成动态滑模控制律,提高控制精度和鲁棒性。研究了全风速功率控制的系统结构,设计了平滑转矩预估监督策略和分治型自适应智能滑模控制,实现了风力机的全风速多模态发电的平滑切换。.上述研究内容通过仿真和实验验证,达到预期目标,取得的成果具有重要的科学意义和工程应用价值。获省级科技进步奖二等奖和三等奖各1项、教育部技术发明奖二等奖1项,发表论文31篇,培养研究生10人,获授权发明专利11件、实用新型2件。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
物联网中区块链技术的应用与挑战
多源数据驱动CNN-GRU模型的公交客流量分类预测
人工智能技术在矿工不安全行为识别中的融合应用
开关磁阻变速风力发电机及其控制系统研究
新型双定子磁悬浮开关磁阻电机的电动/发电机理及其运行控制
垂直轴风力发电用不平衡初级轴向磁通磁悬浮发电机机理研究
单绕组混合外转子磁悬浮开关磁阻飞轮电机运行机理与控制研究