A wide variety of applications require the solution of nonlinear eigenvalueproblems, most of them arsing in mathematics, physics, mechanics, computational geometry and so on. The main purpose of this research is, aiming at several important large-scale.nonlinear eigenvalue problems in these fields, to exploit their special.structures to develop several high performance numerical methods, and.give the theoretic analysis of these methods. Based on this goal we deeply.study a certain kind of positive definite quadratic eigenvalue problems.with wide application backgrounds, and propose three numercial methods for computing the largest or the smallest real eigenvalue: eigenvalue curve method, smallest singular value method and inexact Newton method. Comparing with former methods, the three methods all can make full use of the symmetry and ositive definition of coefficient matrices, and can also efficiently compute a good approximation to the largest or the smallest real eigenvalue even when the eigenvalue is surrounded by.国家自然科学基金资助项目结题报告.3 complex eigenvalues. Since the several smallest positive eigenvalues are.usually the factors of safety for applied external force in the positive.definite quadratic systems, our numerical methods are of great pratical value in engineering designing. Key words: quadratic eigenvalue problem, eigenvalue curve method, smallest singular value method, inexact Newton method
非线性特征值问题广泛出现于数学、物理、力学和计算机图形学等一系列领域中。针对这些领域中提出的若干重要的大规模非线性特征值问题,充分利用其特殊性,提出和发展几个高性能的数值计算方法,并给出这些方法的理论分析,将有着重要的理论价值和广阔的应用前景,而且对推动我国矩阵计算这一领域的研究垮入世界先进行列有不可低估的作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
钢筋混凝土带翼缘剪力墙破坏机理研究
气载放射性碘采样测量方法研究进展
大规模高次多项式特征值问题的求解及应用
求解大规模矩阵问题的非准确方法和全局投影方法
高频散射问题和传输特征值的数值求解
不适定问题求解的理论和方法