In the field of teleoperation, sensory feedback is needed in the near-end control system in order to give people a sense of “remote presentation”, such as hearing, vision, and touch. Tactile feedback can best display the direct information of the far-end object or environment. Generally, the existing structure for tactile feedback is composed of complicated mechanical devices or piezoelectric ceramics, which have problems such as bulkiness, large volume, or small displacement. In this project, based on the principle of air driving electro-deformable films, a flexible haptic feedback method is proposed. The platform for testing force or displacement in the process of haptic feedback is built. The driving mechanism of the haptic feedback unit is studied, and the corresponding physical and mathematical models are established through numerical simulation and experimental research. On this basis, the haptic feedback unit with variable stiffness is built. The platform for testing stiffness change is designed. The influence law of the electro-rheological smart materials on the stiffness change of the tactile feedback structure is ascertained, and tactile feedback of the surface hardness distribution of the object is realized. The integrated manufacturing technology of multiple haptic feedback units is studied. Based on the principle of variable capacitance of electro-deformable films, a self-sensing precise control system is constructed. It is initially applied to interactive flexible gloves integrating haptic sensing and haptic feedback. The flexible tactile feedback structure has the advantages of small size, light weight, high precision, large resolution and being easy to manufacture. Therefore, a more perfect immersive environment experience for users will be achieved, which has broad application prospects.films, a self-sensing precise control system is constructed, and the integrated manufacturing technology of multiple haptic feedback units is studied. It is initially applied to interactive flexible gloves integrating haptic sensing and haptic feedback. The flexible tactile feedback structure has the advantages of small size, light weight, large resolution and being easy to manufacture. A more perfect immersive environment experience for users is achieved in the fields of spatial teleoperation, rehabilitation medical treatment, virtual reality, etc., which has broad application prospects.
遥操作领域中,为了给人类“远程呈现”的感觉,近端操控系统需要听觉、视觉、触觉等反馈,而触觉反馈最能展示远端物体或环境的直接信息。现有触觉反馈结构一般由复杂的机械装置或压电陶瓷等材料构成,存在笨重、体积大、位移小等问题。本项目提出一种基于气压辅助驱动电致变形薄膜结构原理的柔性触觉反馈方法,搭建触觉反馈力/位移测试平台,研究该触觉反馈单元的驱动机制,并通过数值模拟与实验研究,建立相应的物理数学模型。在此基础上,构建变刚度触觉反馈单元,并设计刚度变化测试平台,探明电流变液智能材料对触觉反馈结构刚度变化的影响规律,并研究多个触觉反馈单元的一体化制造技术。基于电致变形薄膜结构的可变电容原理,创建一种自传感精确调控系统,初步应用于集成触觉感知与触觉反馈的交互式柔性手套。此柔性触觉反馈结构具有体积小、质量轻、精度高、分辨率大以及易于制造等优点,为使用者赢得更完善的浸入性环境体验,具有广阔的应用前景。
遥操控技术作为在轨服务与维修、深空探测以及太空制造等国家重大工程的关键技术,仍存在触觉交互不足、操控作业精度低等难题,本项目综述了触觉反馈技术的国内外研究进展,阐述了现有触觉反馈技术所存在的瓶颈问题,设计了气动型触觉反馈驱动器,探究了驱动器的变刚度效果及位移调控,进一步构建了自感知柔性触觉驱动器及其精密力反馈方法,得到了电驱型触觉反馈驱动器的仿真模型和输出位移/力情况,研制了气-电协同型触觉反馈驱动器并实现目标物体形貌、硬度等复杂触觉信息的复现。从柔性触觉反馈驱动器设计、分析、应用等方面阐述了攻破触觉反馈技术瓶颈的方法,为柔性触觉反馈领域的相关科学问题的解决提供新的思路和方向,并在遥操作、虚拟现实领域实现了系统的应用验证。主要工作如下:.1、提出了一种自感知气动型柔性触觉驱动器,在30kPa的气压下提供1.5N的压力反馈,在不同负载下为用户提供一致的力反馈或振动反馈,其中电容可调精度约为0.02pF,输出力可调精度约为0.02N,且可以输出0~20Hz的振动反馈。.2、提出了两种电驱型Maxwell触觉反馈驱动器,分别研究了直流电压、电压频率、高频电压对驱动器位移的影响以及电压对驱动器输出力的影响,实现了触觉反馈驱动器输出位移(1.1mm)和力(1N/cm²)的基本要求。.3、提出了一种电液和气动双驱动模式的柔性触觉驱动器,在0~10kPa气压下最大输出力和位移达到1.5N和4.5mm,电液驱动在很小的范围内(0~45mN,0~0.8mm)实现驱动器位移和力的调节,双驱动模式的组合使驱动器保持高输出和足够的带宽以产生多模态振动。.4、基于气动型触觉反馈驱动器,实现操作者佩戴手套后控制机械手抓取的触觉反馈,并在VR交互式游戏上展开应用;基于电驱型触觉反馈驱动器,构建柔性触觉反馈遥操作系统;结合气-电协同型触觉反馈驱动器,实现操作者遥操控双机械臂精密组装。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
内质网应激在抗肿瘤治疗中的作用及研究进展
不同交易收费类型组合的电商平台 双边定价及影响研究
基于簧片式柔性铰链的柔性驱动器研究
基于柔性齿条机构的变刚度关节驱动器的设计与研究
新型CPVC凝胶柔性驱动器的结构设计与性能调控研究
仿生皮肤的柔性触觉敏感构件与微接触印刷制造方法研究