Monolayer transition metal dichalcogenides (TMDs) have graphene-like two-dimensional structure and have attracted intensive interest as a new type of two-dimensional nanomaterial like graphene. Attributed to their unique optical and electronic properties, a series of its semiconductor members have shown promising applications in the fields like optoelectronic devices. However, corresponding study has been hampered by the lack of efficient way to prepare high-quality monolayer TMDs on a large scale. Focusing on the phase change problem during the intercalation and exfoliation of TMDs layered crystals, this project puts forward a new strategy to solve the bottleneck problem for the macroscopic quantity preparation of high-quality monolayer TMDs. This strategy is based on solid theoretical analysis and combines the controllable intercalation and exfoliation of TMDs crystals without phase change. The main tasks of this project are to investigate the influences of various reaction conditions and parameters on the phase change of TMDs during the intercalation process, to identify the turning point of the phase change, in order to achieve the controllable intercalation of TMDs crystals without phase change. Besides, systematical study on the exfoliation of the obtained intercalated compounds without phase change in a wide range of solvents will be also carried out, in order to significantly improve the exfoliation efficiency and the yield of monolayer products. The research findings of this project may be used to implement the preparation of TMDs two-dimensional nanomaterials on a large scale and promote theirs industrial application research.
单层过渡金属二硫化物(TMDs)具有类石墨烯的二维纳米结构,已成为继石墨烯之后被广泛关注的新型二维纳米材料。由于具有独特的光、电特性,其一系列半导体成员已在光电子器件等领域展现了光明的应用前景。然而目前相关研究工作仍受困于高质量、单层TMDs二维纳米材料的宏量制备瓶颈。本项目针对TMDs层状晶体插层剥离过程中的相结构转变难题,以理论可行性为切入点,创新提出基于TMDs晶体的无相变、可控插层及高效剥离制备路线,以突破高质量、单层TMDs二维纳米材料宏量制备的瓶颈问题。项目将重点探索一系列TMDs成员插层过程中各反应条件和参数的影响,系统性揭示其插层过程中的相转变规律,确定其临界相转变节点,实现一系列TMDs成员的无相变、可控插层,并研究所得无相变TMDs插层化合物在系列溶剂中的高效剥离,大幅提升其剥离效率和单层产率。项目研究成果有望实现TMDs二维纳米材料的宏量生产,并促进其产业化应用研究。
过渡金属二硫化物(TMDs)具有类石墨烯的二维纳米结构,已成为继石墨烯之后被广泛关注的新型二维纳米材料。由于具有独特的光、电特性,其在一系列领域展现了光明的应用前景。然而目前相关研究工作仍受困于高质量、单层TMDs二维纳米材料的宏量制备瓶颈。本项目针对TMDs层状晶体插层剥离过程中的相结构转变问题,创新提出TMDs可控插层及高效剥离制备路线,突破高质量、单层TMDs二维纳米材料宏量制备的瓶颈问题,并系统探索其在光催化、电催化领域的应用潜能。. 项目通过密度泛函理论计算结合实验数据分析,揭示了TMDs 插层过程中的相转变规律,并实现了TMDs的可控插层与高效剥离,建立了高质量TMDs 二维纳米材料的宏量制备新方法。此外,围绕MoS2、WS2等TMDs的可控插层剥离及所得二维纳米材料及其复合物的光催化、电催化性能研究开展了系统性研究工作,揭示了TMDs及其复合催化体系的相关构效关系。在国内外高水平 SCI 期刊发表相关研究论文 12篇。项目相关研究成果有望应用于TMDs二维纳米材料的宏量生产,并促进其相关催化应用探索及未来的产业化研究。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
上转换纳米材料在光动力疗法中的研究进展
插层过渡金属硫族化物二维纳米复合材料的可控制备及电容特性
三明治结构二维层状TMDs/导电PEDOTs纳米复合材料的可控制备及电化学性能
单层过渡金属硫族化合物(TMDs)掺杂改性的第一性原理计算与光电性能研究
过渡金属二硫化物二维纳米结构的可控制备及其表面静电性质研究