Exploiting miniaturization, high sensitivity, integrated sensor technology is an important part in the development of Lab on a chip. The mid-infrared (IR) waveband(2.0μm-20μm)represents a strategically important spectral regime for photonic sensing applications, as characteristic absorption fingerprints of most molecules reside here. This project intends to combine the period waveguide microcavity of high Q, low mode volume, compact size with the chalcogenide glass of extremely wide infrared transparent window, we will focus on the research of mid-infrared integrated optical sensor based on chalcogenide periodic waveguide microcavity. The study includes the following sections: ①Choose the micro-nano waveguide as the main waveguide structure, study the structure design, process preparation and waveguide transmission performance to get the low loss chalcogenide micro-nano waveguide which is suitable for sensing application. ②The project adopt the period waveguide microcavity as basic sensing unit, through the optimization of periodic waveguide cavity design, make the main part of light field confined to the air hole and thereby enhance the interaction of light and sample. The success of the project will lead to the high sensitivity integrated biochemical sensors which is suitable for trace detection. The project is expected to obtain the complete technology of design, fabrication and characterization of chalcogenide glass integrated optical sensors, will provide the necessary theoretical basis and technical support to promote the realization of Mid-IR Lab on a chip system in the future.
开发小型化、高灵敏度、集成型传感技术是片上实验室发展的重要组成部分。中红外波段(2.0μm-20μm)覆盖许多重要生物化学分子基团的特征指纹,在该波段研究适合于微量探测的集成光学生化传感器有着广泛的科学意义和应用前景。本项目拟结合具备高Q、低模式体积、尺寸紧凑等优势的周期波导微腔和极宽中红外透明窗口的硫系玻璃,通过以下工作开展硫系周期波导微腔中红外集成光传感器研究:①采用微纳波导作为主要波导结构,研究波导的结构设计、工艺制备及波导传输性能等,获得适合传感应用的低损耗硫系微纳波导。②采用周期波导微腔作为基本传感单元,通过对周期波导微腔的优化设计,使光场主要部分限制于可与样品充分接触的空气孔中,从而增强光和样品的相互作用,实现适合微量探测的高灵敏度集成型生化传感器。本项目的研究可望获得完备的硫系集成光传感器的设计和制备技术,将为今后中红外波段片上实验室系统的实现提供必要的理论依据和技术支撑。
中红外波段(2.0μ m-20μ m)覆盖许多重要生物化学分子基团的特征指纹,在该波段研究适合于微量探测的集成光学生化传感器有着广泛的应用前景。本项目围绕硫系光波导器件的设计、制备及片上传感性能展开深入研究。研究包括:采用热蒸发法制备高质量硫系薄膜;分别利用紫外曝光法和电子束曝光法实现低损耗的硫系光波导;建立了硫系光波导结构设计和色散调控的仿真计算模型;设计、制作、测试了一种多槽形周期波导微腔,其传感灵敏度达到580 nm/RIU, 传感器可以检测的最小折射率变化达到n~ 4×10-5。项目的顺利实施为硫系波导在中红外光学传感应用奠定了基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
感应不均匀介质的琼斯矩阵
基于图卷积网络的归纳式微博谣言检测新方法
基于混合优化方法的大口径主镜设计
极地微藻对极端环境的适应机制研究进展
中红外硫系玻璃微球传感器
中红外硫系玻璃微球激光器的研究
基于硅周期波导微腔Fano谐振特性的片上传感单元及阵列
慢光集成中磁性周期性纳米结构单向传输波导特性研究