关于某些代数曲线K2群的研究

基本信息
批准号:11626153
项目类别:数学天元基金项目
资助金额:3.00
负责人:刘杭
学科分类:
依托单位:陕西师范大学
批准年份:2016
结题年份:2017
起止时间:2017-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:宋娟娟
关键词:
代数K理论代数曲线Beilinson猜想K2群
结项摘要

The algebraic K-theory of algebraic varieties over number fields reflects important arithmetic properties of algebraic varieties and it is of great significance in both K-theory and number theory. The celebrated Beilinson's conjecture gives the structure of non-torsion part of K-groups of algebraic varieties over number field, but even for the K2 group of algebraic curves, we only have very limited understanding of the structure of its non-torsion part. This project will study the K2 of certain algebraic curves to enhance the understanding its structure. The content of this project includes two aspects. Firstly, for certain quartic curves of genus 3 over rational field, we will construct three elements in the integral K2 group and prove that they are linearly independent by calculating the limit of the regulator. Secondly, we construct elements in the integral K2 group of certain hyperelliptic curves over number field and prove that they are linearly independent by calculating the limit of the regulator. Specifically, we intend to prove the lower bound of the rank of integral K2 group of certain elliptic curves over quadratic field is the same as the rank predicted by Beilinson's conjecture.

数域上代数簇的代数K理论反映了代数簇重要的算术性质,在K理论和数论中都有重要意义。著名的Beilinson猜想给出了一般数域上代数簇K群的无挠部分的结构,但是即使对于代数曲线的K2群,我们对其无挠部分具体结构的了解也极为有限。本项目将通过对某些代数曲线K2群的研究,增进对这些曲线K2群的认识,具体研究内容包括如下两方面。第一,拟对某些有理数域上亏格3的四次曲线构造出其整K2群中的三个元素,通过计算导子的极限证明这些元素线性无关。第二,拟对某些数域上的超椭圆曲线具体构造出其整K2群中的一些元素,通过计算导子证明这些元素线性无关。特别地,证明其中某些二次域上的椭圆曲线的整K2群秩的下界与Beilinson猜想中对K2群秩的预测相同。

项目摘要

著名的Beilinson猜想是代数K理论中最重要的猜想之一。本项目研究了某些代数曲线的K2群和Beilinson猜想以及典型群等相关问题。本项目圆满地完成了预定目标,在Proceedings of the American Mathematical Society,Communications in Algebra,中国科学等国内外著名杂志上接收和发表论文3篇,其中SCI论文两篇。主要研究成果包括三方面:第一,对亏格3的四次曲线族构造了K2群中的三个元素,当参数满足一定条件时证明了这些元素是整元素,通过计算正则子的极限证明了这些元素一般线性无关,从而验证了这些曲线关于K2群秩的Beilinson猜想的下界。第二,构造了四族任意亏格的 (超) 椭圆曲线 K2 群中的元素,证明了在某些条件下这些元素是整元素,当曲线参数满足一定条件时,证明其中一些元素线性无关。 同时给出了分别在两个实二次域上有两个具体的线性无关整元素的一些椭圆曲线族。第三,在稳定秩条件下,研究了奇酉群的分类并给出了一个三明治型定理。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction

Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction

DOI:10.1080/15287394.2018.1502561
发表时间:2018
2

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

DOI:
发表时间:2020
3

当归红芪超滤物对阿霉素致心力衰竭大鼠炎症因子及PI3K、Akt蛋白的影响

当归红芪超滤物对阿霉素致心力衰竭大鼠炎症因子及PI3K、Akt蛋白的影响

DOI:10.3969/j.issn.1008-0805.2022.07.18
发表时间:2022
4

Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway

Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway

DOI:
发表时间:2019
5

地震作用下岩羊村滑坡稳定性与失稳机制研究

地震作用下岩羊村滑坡稳定性与失稳机制研究

DOI:10.16285/j.rsm.2019.1374
发表时间:2020

刘杭的其他基金

批准号:11726606
批准年份:2017
资助金额:10.00
项目类别:数学天元基金项目
批准号:11801345
批准年份:2018
资助金额:22.00
项目类别:青年科学基金项目

相似国自然基金

1

关于代数曲线K2群的Beilinson猜想和Deligne猜想的研究

批准号:11801345
批准年份:2018
负责人:刘杭
学科分类:A0106
资助金额:22.00
项目类别:青年科学基金项目
2

代数曲线的K2群与二元多项式的Mahler测度

批准号:11726606
批准年份:2017
负责人:刘杭
学科分类:A0106
资助金额:10.00
项目类别:数学天元基金项目
3

代数曲线的K2群与二元多项式的Mahler测度

批准号:11726605
批准年份:2017
负责人:秦厚荣
学科分类:A0106
资助金额:20.00
项目类别:数学天元基金项目
4

有限交换群代数的K2群

批准号:11226061
批准年份:2012
负责人:陈虹
学科分类:A0106
资助金额:3.00
项目类别:数学天元基金项目