The Co-Al-W based alloy with excellent strength at high temperatures is one of the most important issues of the Co-based alloys.Intermetallic compound γ'-Co3(Al,W), a phase precipitated from the γ-Co matrix, is the guarantee for the outstanding strength of the Co-Al-W based alloys with a coherent γ/γ' microstructure at high temperatures through the coherent strengthening and flow stress anomalies mechanisms. We have found that the Co-Al-W based alloys with a coherent γ/γ' -Co3(Al,W) microstructure show the tensile elongation larger than 13% at room temperature due to dimple failure mode, and their yield strength at 600oC-800oC is about double of the traditional Co-based alloys. It is interesting that, however, the tensile elongation at 600oC-800oC decreases considerably from 13% at room temperature to 3% caused by intergranular fracture. The grain boundary character distribution (GBCD), segregation of elements (including impurity and alloying elements) on the grain boundaries and brittleness of the γ'-Co3(Al,W) phase at high temperatures are believed to be the keys that result in the anomalous low tensile ductility and intergranular failure of the γ/γ'-Co3(Al,W) coherent microstructure. In this application, the polycrystalline and single crystal γ/γ'-Co3(Al,W) coherent microstructure alloys and γ'-Co3(Al,W) alloys with minor addtions of the rare earth elements Y and Ce will be designed and propared. The tensile mechanical properties and faiulre modes of the γ/γ'-Co3(Al,W) coherent microstructure alloys at room- and high- temperatures dependent on the boundary character distribution (GBCD), distribution of the rare earth elements and the behavior of the γ'-Co3(Al,W) phase will be investigated. We will also analyze the failure mechanisms of the γ/γ'-Co3(Al,W) coherent microstructure at room and high temperatures, reveal effect of the grain boundary character distribution (GBCD), the distribution of the rare earth elements and the behavior of the γ'-Co3(Al,W) phase on the anomalous low tensile ductility of the coherent γ/γ'-Co3(Al,W) microstructure at high-temperatures, and confirm the dominant factor and mechanism. Finally, the strengthening and toughening principle for the composition and microstructure design of the γ/γ'-Co3(Al,W) coherent microstructure will be proposed.
新型高温高强Co-Al-W基合金是Co合金的重要发展方向,γ-Co中的金属间化合物析出相γ'-Co3(Al,W)的共格强化和反常屈服效应是Co-Al-W基合金高温高强度的组织保证。申请者发现室温拉伸时γ/γ'共格组织的延伸率大于13%,发生穿晶韧窝型断裂;600oC-800oC时屈服强度达到传统Co基合金的1倍,但延伸率急剧下降到3%以下,发生了沿晶断裂。晶界结构(晶界特征分布)、元素(杂质和合金元素)在晶界偏聚以及γ'相高温脆性是导致γ/γ'共格组织高温低拉伸塑性的关键因素。本项目研究微量稀土元素Y、Ce掺杂前后对多晶和单晶γ/γ共格组织合金和γ'单相合金的晶界结构(多晶体)、微观组织、室温至高温力学性能的影响规律,明确γ'和γ/γ'共格组织高温变形断裂形式和机理,揭示晶界结构、微量稀土元素和γ'相性能等因素引起γ/γ'共格组织高温低拉伸塑性的机制,提出γ/γ'共格组织的强韧化方法。
多晶体金属间化合物及其合金在室温和高温下往往塑性不足,沿晶断裂是其脆性的主要原因。杂质元素在晶界的偏聚和更多的大角晶界降低了晶界强度,造成低应力沿晶脆性断列。本课题针对具有γ-CoSS/γ'-Co3(Al, W)共格组织的新型Co-Al-W基合金的室温和高温力学性能开展工作,明确高温反常塑性的机理和影响因素,提出基于微合金化的γ/γ’共格组织的强韧化方法。. 以Co-9Al-9W成分为基础,用稀土元素Y(0.01~0.2at%)、Ce(0.01~0.2at%)和活性元素Mg(0.1~1at%)微合金化,应用电弧熔炼和螺旋选晶法制备了具有γ/γ'组织的多晶和单晶合金以及γ'-Co3(Al, W)单相单晶,研究微合金化对晶界杂质分布、晶界特征和显微组织影响规律,应用原位拉伸方法研究室温和高温下Co-9Al-9W基合拉伸力学性能和变形断裂方式。取得主要结果:.1)微合金化不影响Co-Al-W基合金的铸态和时效态组织。时效态合金具有γ-CoSS/γ'-Co3(Al, W)共格组织结构。微合金元素偏聚于晶界和γ'相中,适量添加(0.05at%)排除晶界上杂质元素O,提高小角晶界和对称晶界比例;.2)微合金化均提高γ-CoSS/γ'-Co3(Al, W)组织的室温延伸率(大于20%)。Ce添加的多晶体合金700℃下还保持6%以上塑性,700℃以上发生沿晶解理,塑性大幅下降;而单晶体合金室温~900℃塑性良好,发生韧窝型断裂;.3){1 1 1}<1 1 0>位错起源于γ通道随后切割进入邻近的γ'-Co3(Al, W)中。小角度晶界是滑移线穿过晶界的必要条件:当两个晶粒间几何排列因子M>0.8,施密特因子S>0.3时,滑移线穿过小角度晶界;大角度晶界M值往往较小,开动相邻晶粒中施密特因子较大的滑移系;.4)室温~900℃范围,单晶体合金屈服强度高于多晶体强度,两者在700~800℃发生反常屈服。多晶体700℃反常屈服是位错密度明显提高,更多位错被γ'相钉扎;而单晶体800℃反常屈服是形成反相畴界,其中有高密度的[110]/2位错。.5)首次制备了γ'-Co3(Al, W)单相单晶合金,从室温到900℃塑性良好,在600℃延伸率甚至超过45%,发生微孔聚集型韧性断裂;反常屈服发生在600~700℃。由于没有界面,屈服强度远低于两相合金。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
坚果破壳取仁与包装生产线控制系统设计
面向云工作流安全的任务调度方法
钢筋混凝土带翼缘剪力墙破坏机理研究
基于FTA-BN模型的页岩气井口装置失效概率分析
新型r'相析出高温强化的Co-Al-W基合金
Co-Al-W 基 γ/γ′ 相强化高温合金变形机制的原位原子尺度研究
激光熔覆微合金化Co-Al-W合金界面相容性及强化相形成机理研究
连续柱状晶组织Cu-12Al合金的塑性变形行为和机理