Carbon nanotubes (CNTs) have long been recognized as the stiffest and strongest man-made material known to date. CNTs reinforced cement matrix, having high mechanical properties, an excellent piezoresistivity and electromagnetic shielding property, may be used for developing an intrinsically self-sensing structural material which can be used for civil structural health monitoring, smart structures, highway traffic monitoring, border security, building facility management, etc. However, CNTs are usually very difficult to disperse in an aqueous solution due to their low mass and strong van der Waal's attraction to each other, which often induce clumping. It is well known that chemical force is more powerful than van der Waal's, which will be used to disperse CNTs and enhance the properties of the interface translation zone between CNTs and cement in our project. While, even if CNTs are disentangled and well dispersed in the mix water, another problem known as geometry dependent clustering would still prevent their uniform dispersion in cement paste. The CNTs in the fully hydrated paste will only be distributed in the regions that were originally occupied in the fresh state by the mix water. In fact, for CNTs, due to their miniscule size, the excellent properties of these nanostructures can only be exploited if they are homogeneously embedded into light-weight matrices as those offered by a whole series of engineering polymers. We have formed a new three-dimensional wire-like polymer network within cement matrix using in situ polymerization method. The unqiue polymer network may be used to modify CNT-cement matrix and get a new composite with high mechanical properties,stable pressure-sensitive behavior,high durability properties and perfect microstructures. The mechanisms for explaining their behaviors will be proposed in our project.
碳纳米管具备超强力学性能、极高的纵横比、良好的导电性能及能无损改性等优点,有望显著提高水泥基材料的强度、耐久性和安全性能,并在传感应用方面发挥重要作用(感应能力超过金属应变片),已经成为国内外研究热点。 目前,国际上在碳纳米管/水泥基材料的制备和应用上遇到了"瓶颈"问题:碳纳米管分散困难,界面作用力弱,均匀性差、稳定性差。 本项目将研究:1)采用化学力驱散碳纳米管并改善界面性能;2)利用互穿网络聚合物膜,提高均匀性、稳定性并降低造价;3)利用渗流原理和正交设计方法,确定合理配比和工艺流程;4)系统研究宏微观性能,建立界面微细观结构模型,探讨作用机理;5)研究力、电响应和断裂性能之间的相互关系,确定由电性能变化特征来衡量结构整体应力水平与损伤状况的方法和理论。最终得到一种高性能碳纳米管/水泥基机敏材料及一套能用于实际工程的混凝土结构智能监测系统,并深入探讨科学机理。
水泥混凝土结构是目前世界上最为常用的一种结构形式,其生命周期长达数十年,甚至上百年。在生命周期的全过程中,其可靠性至关重要,一旦失事,将会产生严重的后果,造成重大的人员伤亡和经济损失。提高水泥混凝土的物理力学性能、实现其智能特性(如压~阻效应),可以避免因为结构失效而造成的经济损失和人员伤亡,具有重要的科学意义和社会经济效益。. 材料领域的研究表明,在水泥基材料中加入适量的碳纳米管后具有优越的抗裂能力和极限承受能力,并具有压~阻效应。由于具有这样的特性,碳纳米管/水泥基材料有望提高建筑结构的安全性和可靠性,并实现建筑结构的智能监测。但是碳纳米管/水泥基材料目前依然存在“瓶颈”问题:1)导电介质难以分散,即使借用化学助剂和超声工艺,也无法得到均匀结构;2)导电介质与水泥基材料的界面性能尚不理想,物理力学性能尚待提升;3)机敏性能重复性差、稳定性差、离散性大,难以用于实际工程。. 本项目的主要研究目的就是解决上述瓶颈问题,为碳纳米管水泥基材料的工程应用奠定基础。本项目首先采用化学力驱散碳纳米管并改善界面性能,并利用互穿网络聚合物膜,提高碳纳米管水泥基材料的均匀性、稳定性并降低造价。本项目研究表明,通过合理构筑后,在水泥基材料中加入极少量的碳纳米管后具有优越的抗裂能力和极限承受能力,其极限抗压强度、抗折强度、断裂韧性合断裂能分别可以提高53%,101%,100%和344%。并且,碳纳米管水泥基材料还具有显著的压~阻效应,在15kN的压力时电阻变化率可达25%。尤为重要的是,经过本项目的研究,碳纳米管水泥基材料还可以有效保护钢筋,防止混凝土开裂破坏。快速测试表明,碳纳米管改性钢筋混凝土的开裂时间比普通混凝土提高了60%以上,钢筋质量损失降低97%。由于具有这样的特性,碳纳米管水泥基材料有望在提高混凝土建筑结构的安全性和可靠性、实现建筑结构的智能监测、提高钢筋混凝土耐腐蚀性等方面发挥重要作用,应用前景广泛。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
跨社交网络用户对齐技术综述
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
具有超强护筋能力的碳纳米管/水泥基机敏材料的构建及机理研究
碳纳米管水泥基复合材料疲劳性能研究
超高性能纤维-水泥基复合材料的制备及其界面效应
碳纳米管增强水泥基复合材料研究