Under the double pressure of environmental pollution and energy crisis, it is of great significance to develop a clean, efficient and sustainable wastewater treatment and resource recovery technology in order to achieve the maximum level of recycled energy source. Because of its dual environmental benefits, the utilization of photo-electrochemical catalytic degradation of pollutants to produce electric energy or hydrogen, has drawn more and more attention. However, the removal efficiency of pollutants and the generation properties of electricity and hydrogen are mainly restricted by the sluggish kinetic processes of cathode reduction, and the lack of efficient and economical catalytic materials. In this project, the polythiophene nanostructures will be synthesized through chemical vapor polymerization and modified reasonably by transition-metal complexes, ion-coordinating macromolecules, and two-dimension nano black phosphorus, to enhance the conductivity and catalytic activity, and regulate the band gap and spectral response range. A novel photo-electrochemical system with photosynthetic function will be constructed by using the modified thiophene polymer (photo) cathode. A deep research will be conducted to investigate the photocatalytic removal of wastewater and the generation properties of electricity and/or hydrogen, reveal the transformation mechanism of luminous energy and chemical energy, and illuminate the structure-function relationship between the pollutants degradation and the production of electricity or hydrogen. This project can provide novel nanomaterials and useful theoretical foundations for the development of a sustainable wastewater treatment and resource recovery technology with advantages of practicability, economy, safety, high efficiency, and clean.
在能源危机与环境污染的双重压力下,开发清洁高效并能最大程度回收能源的可持续废水资源化处理技术具有重要意义。利用光电化学催化降解污染物以制取电能/氢能,因其具有双重环境效益而被广泛关注。但受到还原反应动力学过程缓慢、高效价廉阴极材料缺乏等因素的制约,使降解效果和产能效率低下。本项目拟利用化学气相聚合法制备聚噻吩纳米结构,简便快捷地修饰过渡金属配合物、电荷平衡剂、二维纳米黑磷等功能材料,以提高导电性和催化活性、调节带隙和光谱响应范围。利用改性噻吩类聚合物(光)阴极,构建具有类似光合功能的新型光电化学体系,考察光催化降解效果与同步产电和/或制氢的性能,揭示光能、化学能的转化作用机制,阐明降解-产电及降解-制氢的构效关系。本项目的实施为发展实用、经济、安全、高效、清洁的可持续废水资源化处理技术提供了新材料及理论依据。
为应对能源稀缺与环境污染难题,光催化降解污染物同时产生电能或氢能的技术,能够在光能驱动下实现污染物化学能向氢能和/或电能的转化,是一种能有效回收能源的废水资源化处理技术。寻找成本低、催化活性高、稳定性好的阴极助催化剂材料,是光催化产电和/或制氢技术能否走向实用的关键。本课题在气相聚合的基础上制备了比表面积大、催化析氢活性高、可见光电响应的改性聚噻吩类(光)阴极,实现对聚噻吩纳米结构的精确调控,修饰电荷平衡剂促进协调质子,过渡金属配合物的改性能够促进析氢活性的有效提升。二元过渡金属磷硫化物改性材料呈现三维立体微观结构,具有比表面积大、暴露的活性位点多、电子传输快、电荷转移电阻低等优点,性能显著优于一元过渡金属元素的改性,能够有效地实现电催化制氢同步降解污染物。构建了单转盘双室光驱动能量转换系统,分别在可见光和紫外光照射下实现了降解-制氢-产电的三同时功能,实现了污染物的资源化利用,通过简便操作改制成光电化学反应装置实现了光电联合驱动降解污染物制氢,并揭示了光能、化学能的转化作用机制。构建了双转盘单室光催化燃料电池,可见光照射下实现污染物的有效降解,电流输出稳定,系统长时间运行良好,明确了光催化降解同步产电的作用机制。本研究为发展经济、高效、绿色、安全的可持续废水资源化处理技术提供了理论依据与技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
黄河流域水资源利用时空演变特征及驱动要素
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
面向云工作流安全的任务调度方法
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
基于改性PPy阴极光催化燃料电池处理水中难降解污染物及产电性能研究
基于光弥散载体的光生物膜制氢系统的传递及产氢特性
自偏压光电法引发氯自由基高效处理氨氮废水并产氢的研究
废水中Cr(VI)快速光-电协同催化还原与Cr(III)资源回收研究