PPAR-γ co-activator 1α (PGC-1α) has important impacts on cardiac energy metabolism and heart failure. Previous studies were controversial on the mechanisms of PGC-1α in cardiac energy metabolism. Many studies were failed to improve the mito-biogenesis in heart failure via enhancing the expression of PGC-1α,which may be caused by ignoring the crosstalk between energy metabolism and autophagy.In this study, we will use transgene and gene silencing technology in heart failure model to explore the influence of PINK1 and Mfn2 on cardiac energy metabolism, mitochondria and heart function. We aim to prove that 1) phosphorylation of Mfn2 by increasing the expression of PINK1 would participate in mitophagy, and avoiding the side effects of overexpression PGC-1α,boosting the efficiency of energy metabolism, 2) increased expression of non-phosphorylated Mfn2, which in combination with PGC-1α, could increase the mito-biogenesis and upgrade energy supply. 3) by regulating PINK1,Mfn2 and PGC-1α, we wish to confirm that eliminating impaired mitochondria, together with increasing mito-biogenesis can ameliorate heart failure. This would provide an attractive target for the treatment of heart failure.
PGC-1α与能量代谢和心力衰竭密切相关,既往PGC-1α对心衰能量代谢研究的结论不一。单纯增加PGC-1α催动线粒体新生难以成功且对机体产生不利影响,其原因可能是忽略了能量与自噬的相互影响。本研究拟应用转基因或基因沉默技术,通过体外实验和心力衰竭模型在体实验,探索PINK1、Mfn2对于能量代谢和心功能的影响。拟证明:1.增加PINK1,通过磷酸化Mfn2,参与线粒体自噬清除损伤线粒体,增加线粒体产能效率,避免单纯激活PGC-1α带来的不利。2.增加非磷酸化Mfn2能协同PGC-1α、NT-PGC-1α促进线粒体新生,增加能量供应。3.协同调节PINK1、Mfn2及PGC-1α,拟证明我们提出的能量与线粒体自噬平衡假说,即在增加清除损伤线粒体的同时,促进线粒体合成增加能量供应能改善心衰。探索PGC-1α、PINK1、Mfn2在调节心衰发生发展中病理生理意义,为心力衰竭的防治提供新的思路。
线粒体能量供应不足是心力衰竭的重要病理生理机制。本项目对线粒体质量控制在心力衰竭发生发展中的作用及其机制进行了探索。研究结果显示:1)在血管紧张素II持续诱导的心肌损伤过程中,随着PINK1表达水平于中晚期阶段下降,出现线粒体自噬水平失调,线粒体动力学紊乱,心肌纤维化,心肌凋亡及坏死等。通过调节PINK1的表达,可清除线粒体损伤部分,诱导其自噬降解,增加分解后底物的再循环利用,同时消除由线粒体损伤诱发的瀑布效应。进一步研究发现,上述自噬过程由PINK1促进PARKIN从胞质向线粒体转位并磷酸化而实现。2)血管紧张素II损伤过程中,MFN2的表达水平降低,线粒体融合机制代偿不足,导致线粒体融合水平失调,难以恢复原有的能量代谢效率。通过外源性过表达MFN2,促进分裂后线粒体残存单元进行相互融合,并协同PINK1/PARKIN优化线粒体自噬过程,清除线粒体损伤部分,双向调控线粒体质量,充分发挥其功能。3)在异丙肾上腺素诱导心肌细胞损伤过程中,外源性过表达PINK1亦通过PARKIN途径上调线粒体自噬水平;进一步过表达MFN2,优化PINK1-线粒体自噬过程,可同时促进分裂后的线粒体健康部分相互融合为线粒体完整单元;本研究还发现二甲双胍可上调PGC-1α表达,促进线粒体新生以补充线粒体池。本项目研究结果提示,综合调控线粒体自噬-融合-新生,可实现心肌损伤发展过程中线粒体能量代谢的改善,为心力衰竭线粒体能量代谢研究提供新的理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
参附配伍通过PGC-1α/ERR改善心力衰竭线粒体能量代谢重构
阿霉素诱导充血性心力衰竭中心肌能量代谢的转录平衡调节:聚焦PPARα-PGC-1α信号轴
Notch1/PTEN介导的Pink1/Mfn2/Parkin通路调控自噬、维护线粒体动力平衡参与心肌保护
REDD2通过改善能量代谢重构抑制心力衰竭的机制研究