一类Schrodinger-Poisson型方程解的存在性与集中行为

基本信息
批准号:11601173
项目类别:青年科学基金项目
资助金额:19.00
负责人:孙小妹
学科分类:
依托单位:华中农业大学
批准年份:2016
结题年份:2019
起止时间:2017-01-01 - 2019-12-31
项目状态: 已结题
项目参与者:曾小雨,陶亦凡,汪琪
关键词:
PS条件变分原理临界点理论集中列紧性非线性椭圆方程
结项摘要

Schrodinger-Poisson equation is an very important field equation,which is widely used in quantum mechanics,semiconductor theory and statistical mechanics.This project focuses on a class of Schrodinger-Poisson equation with attractive nonlocal term and satisfying Berestycki-Lions condition,which is a generalization of the Choquard equation,it can be used to model nonlocal problem.We consider the existence and concentration behavior of solutions.Our research is divided into two aspects:(1)For sub critical case,we consider the existence and concentration behavior of solutions for Schrodinger-Poisson equation under Berestycki-Lions condition,including the existence of solutions and the existence of multipeak solutions;(2)For critical case,including Sobolev critical case and Hardy-Littlewood-Sobolev critical case,we consider the existence and concentration behavior of solutions for Schrodinger-Poisson equation under Berestycki-Lions condition.To solve the above problems,we need to overcome the difficulties caused by nonlocal items and Berestycki-Lions conditions.Through the research of this project,we can deeply understand the influence of non local term and Berestycki-Lions conditions on the properties of the solutions.

Schrodinger-Poisson方程是一类重要的场方程,在量子力学、半导体理论、统计力学中有广泛应用.本项目围绕一类非线性项满足Berestycki-Lions条件且非局部项为吸引项的Schrodinger-Poisson型方程展开,该方程是Choquard方程的推广,可用于描述非局部问题.本项目关注解的存在性与集中行为.研究分为两方面:(1)非线性项满足次临界Berestycki-Lions条件时解的存在性与集中行为,包括解的多重性与多峰解;(2)非线性项满足临界Berestycki-Lions条件(包括Sobolev临界和Hardy-Littlewood-Sobolev临界)时解的存在性与集中行为.如何克服非局部项和Berestycki-Lions条件产生的困难是解决问题的关键。通过研究可以深入认识非局部项和Berestycki-Lions条件对解的相关性质产生的影响。

项目摘要

Schrodinger-Poisson型方程具有很强物理背景,是与量子动力学密切相关的一类数学模型。本项目主要围绕两类Schrodinger-Poisson型方程展开,利用变分理论、罚函数方法等手段研究了解的存在性与多解问题,并对相关不等式进行了深入分析。详细研究工作如下:1.利用罚函数方法,对非线性项满足Berestycki-Lions条件的二维Choquard方程解的半经典极限问题进行了分析,得到其集中行为。2. 利用变分理论研究了一类带有非局部卷积项以及混合位势的P-Choquard型方程解的存在性。3.利用辅助函数以及精细的能量估计,得到Gross-Pitaevskii方程基态解的爆破行为。4.利用散度定理,对球面上Hardy不等式以及Heisenberg 群上Leray-Trudinger不等式进行了深入分析。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

基于分形L系统的水稻根系建模方法研究

基于分形L系统的水稻根系建模方法研究

DOI:10.13836/j.jjau.2020047
发表时间:2020
3

监管的非对称性、盈余管理模式选择与证监会执法效率?

监管的非对称性、盈余管理模式选择与证监会执法效率?

DOI:
发表时间:2016
4

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
5

Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth

Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth

DOI:
发表时间:

孙小妹的其他基金

相似国自然基金

1

拟线性椭圆型方程解的存在性与集中性

批准号:11471137
批准年份:2014
负责人:林晓艳
学科分类:A0301
资助金额:60.00
项目类别:面上项目
2

两类非线性椭圆型方程解的存在性、稳定性与集中性

批准号:11901147
批准年份:2019
负责人:罗肖
学科分类:A0206
资助金额:28.00
项目类别:青年科学基金项目
3

一类时滞积分方程解的存在性

批准号:11271235
批准年份:2012
负责人:康淑瑰
学科分类:A0301
资助金额:68.00
项目类别:面上项目
4

分数阶非线性薛定谔方程解的存在性与集中性研究

批准号:11601234
批准年份:2016
负责人:尚旭东
学科分类:A0206
资助金额:18.00
项目类别:青年科学基金项目