The magnetorheological fluid (MRF) behaves a magnetoviscous effect governed by external magnetic field and offers promising applications in future adaptable lubrication accompanied by external magnetic field. Considering the microscale thickness of MRF lubrication film, the complex forces exerting on magnetic particles (MPs) as well as the multi-field coupling effects in the flow and heat transfer processes, the hydrodynamic lubrication mechanism of MRF and its controllability principle are still to be studied. In this project, the motion and heat transfer behaviors of MPs in the multi-field system composed of magnetic field, thermal field, liquid phase and solid phase will be investigated and the lubrication capability control method will be proposed. Firstly, a two-phase flow model of MPs and base fluid will be established on the base of the Lattice-Boltzmann Method (LBM) to investigate the motion and heat transfer of MPs in nanoscale shear flow. The structual evolution of MPs clusters will be revealed and the influences of magnetic field intensity and shear rate on the viscosity and thermal conductivity of MRF with will be obtained. Based on similitude, an experiment of pressure driven MRF flow in micro channel will be carried out to verify the LBM simulation results. Secondly, the LBM model with multiscale lattices and double populations will be developed to investigate the flow and heat transfer of MRF lubrication film, as a result, the effect of magnetic field on the hydrodynamic effect of MRF will be determined. Finally, the hydrodynamic lubrication performance prediction and control methods will be established and the corresponding end face hydrodynamic lubrication experiment of MRF will be performed. The results of this project will provide the theoretical basis for the design of MRF hydrodynamic lubrication system and the adaptive control of lubrication capability.
磁流变液(MRF)具有可控的磁粘效应,将其作为润滑剂,可在磁场配合下实现自适应动压润滑。由于MRF润滑膜尺度微小、纳米磁颗粒受力与运动情况复杂、流动和传热过程存在多场耦合效应,MRF的动压润滑机理及其自适应原理仍不明确。本项目研究低粘度MRF润滑膜中磁颗粒的磁-热-流-固多场耦合行为,建立MRF动压润滑性能的控制方法。(1)建立磁颗粒与基液的两相格子玻尔兹曼(LBM)模型,研究MRF剪切流中磁颗粒的运动和传热特性,获得磁颗粒团簇结构的演化规律以及MRF粘度、导热系数与磁场强度、剪切速率之间的关系,采用流动相似的微通道压差流试验对模拟结果进行验证;(2)基于跨尺度的双分布LBM模型,研究MRF润滑膜的流动和传热特性,确定磁场对液膜动压效应的影响规律;(3)建立MRF动压润滑性能的预测和控制方法,并进行MRF端面动压润滑试验。研究结果可为MRF润滑系统设计和润滑性能的自适应控制提供理论基础。
磁流变液(Magnetorheological Fluid,MRF)是一种新型功能材料,其可受外磁场控制的磁粘效应,使MRF既具有液体的流动性,又具有磁性材料的磁性。相较于传统密封润滑介质,MRF可以提供一种更好且可控的密封润滑性能。但由于高剪切速率下,MRF润滑膜中磁颗粒的迁移、团聚过程十分复杂,很难从单个尺度研究MRF以及磁颗粒的运动及传热特性,故本项目通过将MRF视为均一介质或多相介质,通过LBM模拟、Fluent模拟及试验研究方法等,跨尺度研究了MRF中基液及磁颗粒的多场耦合特性。.主要完成工作包括:.(1)获得了纳米磁颗粒运动与传热特性.通过将MRF中的磁颗粒作为有体积的固相处理,建立磁颗粒与基液的两相流模型,采用LBM,研究了不同基液及磁颗粒参数对磁颗粒团簇结构及运动与传热特性的影响,获得了基液剪切速率、磁场强度和方向与粘度的关系及静止基液中初始随机分布的磁颗粒在外磁场作用下的迁移规律。.(2)研究了MRF液膜多场耦合特性.通过将磁颗粒相作为一种流动连续的拟流体,同时建立离散的磁颗粒相和连续相的密度、温度双分布玻尔兹曼模型,研究了磁颗粒的直径、磁导率、磁偶极矩、颗粒数密度,以及磁场强度(梯度)和基液粘度等参数对MRF液膜流动和传热特性的影响规律,确定了外磁场、摩擦热、基液与磁颗粒之间的耦合作用关系,获得了这些因素对液膜压力分布的影响规律。.(3)建立了MRF动压润滑性能预测方法.根据模拟和试验结果,建立MRF动压润滑性能预测方法,预测了在不同外磁场强度、转速和载荷等条件下,膜厚、摩擦扭矩、承载力等参数。获得了压力分布随外磁场强度(梯度)的变化规律,提出了动压润滑性能控制方法,并建立试验装置进行验证,提出了MRF动压润滑性能的自适应控制方法。.(4)探索了一种磁流体制备工艺,并研究了其用于水面除油的方法.探索了一种油基纳米磁流体的制备和性能测试方法,并研究了其水面除油效果。所开发的油基磁流体具有疏水亲油的特性,对水面浮油具有良好的吸附效果,同时通过磁场可以对吸附完成的磁流体进行回收及再生。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
粗颗粒土的静止土压力系数非线性分析与计算方法
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
基于多模态信息特征融合的犯罪预测算法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
多场耦合下磁流变液特性的微结构机理及跨尺度分析
低速重载油膜的磁流固多场耦合润滑机理与界面力学行为
表面改性对颗粒间摩擦及其电/磁流变行为的影响研究
磁流变离合器多场耦合调速机理及其精确控制研究