The steady development of nuclear electric power industry offered an effective method for the enery crisis in the world. At the same time, the worrying about of potential radiation pollutions are also the byproduct. However, whatever the theory of dispose of nuclear radiation pollutions, or relative tactics or materials are totally insufficient. Based on the reality and the experience of mine and my cooperation unit on environment repairment and novel carbon nanomaterials, this project will focus on the synthesis of novel Prussisan Blue/Carbon nanomaterials adsorbent and its application on collecting the nuclear radioactive Cesium ions from environment. In summary, we will design and synthesis Prussian Blue@Fe3O4/carbon Nanocomposites adsorbent with a hierarchical structure, which could be recovered conveniently by making use of the magnetic characters. Firstly, the magnetic Fe3O4 nanoparticles will be in situ anchored onto large surface area nanocarbon materials. Subsequently, introducing the Fe(CN)64- ions into the reaction system. The key experiment conditions, for example, the composition of atmosphere in preparation, temperature, pH value and reaction time etc. will be optimized for in situ size-controllable synthesizing a nanocrystalline assembly layer of Prussian Blue on the surface of Fe3O4. The adsorption abilities of Cs+ by these materials will be studied carefully by varying the composition and morphologies. After optimizing the preparation conditions, we will try develop more high adsorption efficent and easy-recover novel practical adsorption materials for nuclear pollution.For example, we will applied these materials as the main active sites for producing 3-D magnetic nanocarbon composites materials and anti-radiation sponges. These reliable products could be selected for different adsorption environment, such as water, soil, etc. If the project could be processed smoothly, the method could be a general way for the research and development of new materials for nuclear pollution treatment and motivates the invention of other technique for other environment pollutions' treatment.
核电工业的稳步发展为解决世界能源危机提供了有效的途径,但也带来潜在核辐射污染的隐忧。本项目针对现今核辐射污染处理理论、方法及材料欠缺的现实情况,结合本人及合作方在环境修复领域和新型纳米碳材料的基础,拟开展用于净化核辐射铯的新型普鲁士蓝/碳纳米复合吸附材料的研究,设计制备可磁性回收的普鲁士蓝@Fe3O4/碳多级结构复合材料。本项目首先在大比表面纳米碳材料上原位锚定磁性四氧化三铁纳米粒子,再引入氰化铁离子,通过调控制备气氛组成、温度、pH及时间等关键实验条件,在磁性四氧化三铁表面原位合成尺度可控的普鲁士蓝的纳米晶体组装层,然后研究该材料的组分及形貌对放射性铯离子吸附能力。然后优化制备条件,探索高效、回收简单的新型实用核污染净化材料,如研发三维磁性纳米碳复合材料和抗辐射海绵,以适应不同吸附环境的要求。本项目如取得突破,将可以为核污染处理的材料研发提供一个普适途径,推动其他环境污染处理的技术发展。
核电工业的稳步发展为解决世界能源危机提供了有效的途径,但也带来了潜在的核辐射污染隐忧。放射性铯是核污染的主要成分,在衰变过程中会释放出强辐射性的ß射线和r射线,即使含量很低,也会对人们的健康造成长期的严重威胁,甚至致畸、致癌、致突变。本项目以核污染处理放射性铯净化为目的,基于普鲁士蓝(PB)微晶机械性能差、难成型、难回收这一关键科学问题,通过设计构筑新型磁性普鲁士蓝/碳纳米复合吸附材料,利用纳米碳材料的超大比表面积及其稳定的物理/化学特性,将Fe3O4可控锚定在纳米碳材料表面,再通过改性设计制备可磁性回收的PB@Fe3O4/纳米碳多级结构复合材料(CNC,carbon nano-composite) PB@Fe3O4/CNC。再将PB@Fe3O4/CNC与高分子聚合物复合,主要研究内容如下:.1. 基于改进的Hummers-Offeman 法,发展了以膨胀石墨为原料超声辅助制备氧化石墨烯的简单快速的方法。这种方法为工业上大规模制备氧化石墨烯提供了一个新的途径,为石墨烯的产业化应用奠定了基础。.2. 采用四氧化三铁原位生长普鲁士蓝纳米晶的方法在室温下用环境友好试剂为原料制备了PB/Fe3O4和PB/Fe3O4/GO两种可磁性回收的纳米复合材料吸附剂,并将它们用于水体中放射性铯的净化。.3. 以PB/Fe3O4和PB/Fe3O4/GO两种磁性纳米复合材料以及海藻酸钠和氯化钙为原料,制备了适合装柱操作的笼装纳米粒子(PB/Fe3O4或PB/Fe3O4/GO)的海藻酸钙微球(PFM或PFGM),并将它们用于水体和土壤中放射性铯的去除。磁性微球的制备拓展了纳米材料吸附剂的应用领域,对放射性铯污染废水和土壤的处理具有重大意义。.4. 用简单的室温搅拌法,以Fe3+交联的聚丙烯酸(PAA)树脂为载体,在聚合物内部和表面采用原位生长普鲁士蓝纳米晶的方法制备了PB/聚合物复合材料(FPPB),并将其用于水体中放射性铯的净化。该材料有望用于放射性铯污染快速处理处置。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
普鲁士蓝/导电聚合物纳米复合材料的可控制备及功能化
磁性铁氧体@类普鲁士蓝核壳结构纳米复合材料的自模板法合成及性能研究
普鲁士蓝类似物和磷灰石纳米复合高效铯离子吸附剂的开发和穆斯堡尔谱学研究
微乳液-水热法联合制备纳米光致磁性材料- - Co-Fe普鲁士蓝类配合物的研究