Friction is a ubiquitous physical phenomenon. When the appearance of friction has such an important position in our daily life, it is desirable to eliminate friction as much as possible in most technical applications because friction consumes most of energy and materials we produced. Obtaining an ultra-low friction interface is an important way to solve energy waste and material consumption. The frictional collapse of the graphene material under pressure we found, that is, the disappearance of the friction at a particular pressure gives a new idea of obtaining an almost frictionless interface. Based on our preliminary exploration work of the graphene system, the project will focus on the research of the basic law of the relationship between friction and load for the typical two-dimensional materials and the frictional collapse phenomenon hidden in it. The analysis of the electrical properties of two-dimensional materials will be carried out to establish the relationship between friction collapse and electrical characteristics, thus revealing the essential original of friction collapse caused by pressure. We intend to tailor the electrical characteristics of dimensional materials by means of structural adjustment, substrate-material coupling design, thus regulating friction collapse caused by pressure, and sum up the control mechanism of friction collapse. Based on the above research, we can reveal the nature of frictional collapse of two dimensional material hidden under the nonlinear law of nano-friction, reveal the regulatory mechanism of friction collapse. This project will lay the theoretical foundation for the experiment research and the application of friction collapse.
摩擦是一种无处不在的物理现象,在大多数技术应用中希望尽可能地消除摩擦,因为摩擦消耗了我们生产的大部分能源和材料。获得超低摩擦界面是解决能源浪费和材料消耗的重要途径。我们发现的石墨烯材料在压力下的摩擦塌缩现象——即摩擦在特定的压力下完全消失给出了获得几乎无摩擦的界面的新思路。本项目拟在我们前期探索的石墨烯摩擦塌缩初步结果的基础上,重点考察典型二维材料摩擦与载荷之间的基本规律和隐藏于其中的摩擦塌缩现象,通过对二维材料电学性能的分析研究建立摩擦塌缩和电学特性的关联规律,揭示压力引起的摩擦塌缩的本质原因;拟通过结构调整、基底-材料耦合设计调控二维材料摩擦界面的电学特性,从而调控载荷引起的摩擦塌缩,总结摩擦塌缩调控机理。基于上述研究可以揭示隐藏于纳米摩擦非线性规律下的二维材料摩擦塌缩现象的本质,揭示摩擦塌缩的调控机理,为接下来的实验研究和在微纳尺度上的摩擦实际应用奠定理论基础。
摩擦是一种无处不在的物理现象,在大多数技术应用中希望尽可能地消除摩擦,因为摩擦 消耗了我们生产的大部分能源和材料。获得超低摩擦界面是解决能源浪费和材料消耗的重要途 径。我们发现的石墨烯材料在压力下的摩擦塌缩现象——即摩擦在特定的压力下完全消失给出了获得几乎无摩擦的界面的新思路。本项目在我们前期探索的石墨烯摩擦塌缩初步结果的基础上,重点考察典型二维材料摩擦与载荷之间的基本规律和隐藏于其中的摩擦塌缩现象,通过对二维材料电学性能的分析研究建立摩擦塌缩和电学特性的关联规律,发现压力诱导超滑本质是由界面电荷的重新分布引起的;通过结构调整、基底-材料耦合设计调控二维材料摩擦界面的电学特性,可以调控载荷引起的摩擦塌缩;以石墨烯、碳纳米管等多种碳纳米材料为例,讨论了通过原子力显微镜技术手段,探知碳纳米材料表面反常超滑、化学力图像和原子力显微镜图像相互识别的可行性。本项目的研究为压力诱导超滑的实验室验证提供了理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
上转换纳米材料在光动力疗法中的研究进展
引力塌缩与黑洞形成
扩展Vaidya时空中的引力塌缩及其试探粒子运动的研究
聚合物单链塌缩与结晶相互竞争的机理研究
核塌缩超新星的观测和理论研究