Large-size ultrathin physically tempering glass within 2mm thickness is widely needed in new energy, transportation, construction and other fields due to its light weight, impact resistance, high temperature resistance , flexibility and safety. However, the limited thickness of physically tempered glass is no less than 2mm even made by the most advanced technology with air suspension. The problem is that how to establish a reasonable temperature gradient along the glass thickness direction while ensuring a good temperature uniformity and smoothness on the glass surface in the process of heat transfer by impinging jets. To solve the problem, the forming mechanism of internal stress is studied to quantitatively describe the relationship of tempering degree and aging temperature gradient along thickness direction in the ultra-thin glass. Moreover, the effect and evolution factors of temperature distribution on the impinging surface are investigated by the transient heat transfer mechanism combining the coupling effects of the velocity field, temperature field and array-jets field in a small spacing. On the basis of them, the forming mechanism of physically tempering 2mm thickness ultra-thin glass with air suspension on dual design requirements will be obtained. Therefore, the most reasonable coupling manner and loading mode by multiple physical fields will be revealed. After the execution of this project, it is expected to lay a theoretical foundation and provide practice guidance for breaking through the 2mm limit thickness of ultra-thin physically tempered glass.
厚度2mm以下的大尺寸超薄物理钢化玻璃由于具有质量轻、耐冲击、耐高温、柔性、安全等特点在新能源、交通运输和建筑等领域有广泛需求。然而,目前最先进的超薄玻璃气浮式物理钢化技术加工的玻璃厚度也止步2mm。如何在射流冲击换热过程中,建立沿玻璃厚度方向合理温度梯度的同时兼顾玻璃表面换热均匀性和良好平整度是气浮钢化的难题。针对以上问题,本项目提出研究2mm以下超薄玻璃钢化应力形成机制,定量描述钢化程度与沿厚度方向的时效温度梯度的关系;通过建立速度场、温度场和小间距阵列射流流场耦合作用下的瞬态冲击换热机制,阐明冲击换热表面温度分布的影响因素和演化规律。在此基础上,建立钢化应力形成机制与瞬态冲击换热行为关系的理论模型,最终获得双目标设计要求的2mm以下大尺寸超薄玻璃气浮式物理钢化成型机制,揭示多物理场在钢化成型中的合理耦合方式和加载方法,为突破超薄物理钢化玻璃的2mm极限厚度提供理论依据和技术支持。
双玻组件可实现双面发电、电池寿命长,是光伏组件的发展方向,但玻璃厚度大、透光率低。突破双玻组件技术的关键在于轻质、高强、安全、高透光的超薄玻璃钢化制造。本项目针对物理钢化超薄玻璃过程中应力调控和表面质量控制的难题,首先借助非线性有限元分析方法,研究了不同厚度的平板玻璃表面和内部的温度随淬冷时间的变化规律,探明了玻璃沿厚度方向的温度梯度与玻璃表层和中心的动态应力分布之间的关系,建立了2mm以下厚度平板玻璃物理钢化的应力模型;其次创新采用非接触式钢化技术,研究小间距瞬态冲击换热理论,揭示出无量纲射流高度H/D<1时冲击换热表面温度分布受速度场和阵列射流流场耦合作用的演化规律。研究结果为气浮式超薄玻璃物理钢化装备的设计与制造提供理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
农超对接模式中利益分配问题研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
大尺寸超薄玻璃基板高效高精度平整度检测新方法
大尺度叶轮/浮式风电平台/系泊系统耦合动力响应研究
气浮球轴承中层板微缝散布式气膜流动及热皱损研究
大尺寸碳纤维复合材料壳体结构隔热一体化成型基础问题