The assembled structure system composed of Assembled Reinforced Concrete Frame with Plastic-deformation Controllable Pings (ARCF-PCPs) and Buckling-Restrained Brace (BRB) is characterized by large lateral stiffness, plastic-deformation controllability and easy installation, and meets the industrialized construction properties. It is a new-type assembled building structure system with high performance. This project aims to study the force transfer mechanism and large lateral stiffness formation mechanism in the truss structure, which is composed of ARCF-PCPs and BRB. It also focuses on the ductility evolution mechanism in the lateral force-resisting system from brittle truss structure to ductile frame structure, failure evolution and failure mode of the plastic-deformation controllable frame structure. To this end, the mechanical principle of the reciprocation-bending and energy-dissipating steel hinge with plastic-deformation controllability is examined. Then, the geometric constitution of the plastic-deformation controllable structure system composed of ARCF-PCPs and BRB is established. All these large lateral stiffness formation mechanism, co-operative working performances between the truss structure and the assembled frame structure, exit-work mechanism of the BRB and formation mechanism of ductility are explored. The optimization on the transfer mechanism and the failure mode of the assembled reinforced concrete frame with plastic-deformation controllable steel pings is performed. In the end, the performance-based and energy-based seismic design theory of the plastic-deformation controllable structure system composed of ARCF-PCPs and BRB is created. Innovative outcomes of the plastic-deformation controllable structure system composed of ARCF-PCPs and BRB, such as industrialization characteristics, large lateral stiffness, multi-defense lines for earthquake-resistant and plastic-deformation controllable design theory, are achieved. These findings provide a systematic approach for analyzing and designing high-performance assembly structure systems.
装配式塑性可控铰混凝土框架-防屈曲支撑结构体系具有较大抗侧刚度、塑性可控、易安装等特征,且满足建筑工业化属性,是高性能和新型装配式结构体系。本项目拟研究装配式塑性可控铰混凝土框架-防屈曲支撑组成的桁架结构体系传力机制、较大抗侧刚度形成机理、桁架式转化为框架式抗侧力体系的延性形成机制、塑性可控铰混凝土框架延性体系的失效演化规律、失效模式等科学问题。为此,研究塑性可控铰的往复弯曲耗能作用机理,建立装配式塑性可控铰混凝土框架-防屈曲支撑结构体系的体系构成方法,揭示抗侧刚度形成机理与协同工作性能、支撑退出机制及体系延性形成机理,优化塑性可控铰混凝土框架结构体系的传力机制和屈服失效模式,建立塑性可控结构体系基于能量的性能抗震设计理论。取得装配式塑性可控铰混凝土框架-防屈曲支撑结构体系实现工业化特性、较大抗侧刚度、多道抗震设防、塑性可控结构设计方法等创新成果,为高性能装配式结构提供系统设计和分析方法。
装配式结构具有绿色环保、生产效率高、降低人力成本的优点,符合绿色建筑发展要求,是建筑业的主要发展方向。为进一步提高装配式钢筋混凝土框架结构整体抗震性能,提出了装配式塑性可控铰框架-防屈曲支撑结构体系,通过增设的耗能减震元件(防屈曲支撑、塑性可控铰),提高结构抗侧刚度、承载能力与延性耗能能力;控制结构的失效路径以保护主体结构不被破坏,引导结构形成“强柱-中梁-弱支撑”合理的失效模式,实现多重耗能机制,使其具备多道抗震防线,从而形成高性能结构体系。.研发了新型高性能屈曲约束金属板连接、塑性可控铰等耗能减震部件;基于屈曲约束金属板连接力学性能和塑性可控铰的往复弯曲耗能作用机理的研究,得到了塑性可控铰的滞回本构模型;研发了新型耗能减震部件与预制混凝土构件的高效连接技术,研究了装配式塑性可控铰节点滞回性能;提出了装配式塑性可控铰框架-防屈曲支撑结构体系抗侧刚度计算方法、新型耗能减震部件优化布置方法、预制受力构件连接设计方法;建立了满足震损可修复的装配式塑性可控铰框架-防屈曲支撑结构体系损伤演化时序性和递进式失效模式控制策略, 提出满足震损可修复的性能指标,创新罕遇地震下装配式塑性可控铰框架-防屈曲支撑结构体系多道抗震设防的能量和抗力需求设计方法,形成了装配式塑性可控铰框架-防屈曲支撑结构体系抗罕遇地震设计方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
屈曲约束支撑与装配式混凝土框架连接抗震机理与设计方法研究
摇摆防屈曲支撑-框架新型结构体系抗震性能研究
装配式组合防屈曲支撑及其框架结构的设计理论
新型组合碟簧自复位防屈曲支撑钢框架体系抗震性能与设计方法