"To promote the changes of the energy production and use patterns" is one of the projects with the strategic significance in the Twelfth Five-Year Plan. One of the important ways of using solar energy is to develop the lower cost, higher efficiency and pollution-free dye-sensitized solar cells (DSSC). In DSSC, the main function of the electrolyte is to restore the electrolyte and transfer the charges of dye molecules, the electrolyte is one of the important factor of affecting the photovoltaic conversion efficiency and long-term stability of the DSSC.The widely used iodine couple is strongly corrosive, not propitious to encapsulation, and not well matched with the energy level of the dye, severely limiting the increasing of the open circuit voltage of the DSSC, so it is an urgent problem to develop the efficient new non-iodine electrolyte which is well matched with the energy level of each component of the DSSC. Since polyoxometalates (POMs) possess the various structures, good solubility, stability and redox activity, they can be easily reduced to heteropoly blue, the reduced polyoxoanion and its oxidation type can be used as the redox couple to build the electrolyte of the DSSC. In this project, we firstly use the reduced and oxidized POMs as the iodine-free couple to build the electrolyte of the DSSC, to overcome the shortcomings of the iodine couple, and to improve the photoelectric conversion efficiency of DSSC. The POMs-based iodine-free couple is an innovative project of great significance, which have never been reported. It will provide a new way to solve the energy crisis, environmental pollution and other important issues.
"推动能源生产和利用方式变革"是十二五规划中具有重大战略意义的课题之一。 太阳能的重要利用方式之一是研制成本较低、效率较高和无污染的染料敏化太阳能电池(DSSC)。其中,电解质的主要功能是复原染料和传输电荷,它是影响DSSC光电转化效率和长期稳定性的重要因素之一,目前广泛采用的碘电对有强腐蚀性,且不利于封装,与染料能级匹配不好,严重限制了DSSC开路电压的提高,因此开发与电池各组分能级匹配的新型高效非碘电解质是提高DSSC光电转换效率所亟待解决的问题。由于多酸结构多样,溶解性和稳定性好,氧化还原活性高,本身可被还原成杂多蓝,可与其氧化型多酸组成氧化还原电对构筑DSSC电解质。本课题首次以氧化型和还原型多酸为非碘电对构筑DSSC的电解质,克服碘电对缺点,提高DSSC的光电转化效率。多酸型非碘电对是一项具有重大意义的创新性课题,未见报道,将为解决能源危机和环境污染等重大问题提供新的途径。
染料敏化太阳能电池(英文缩写为DSSC)因其成本低廉、制作工艺简单、光电转换效率较高等优点,是能源领域的热点课题之一。电解质是影响DSSC光电转化效率和长期稳定性的重要因素之一,目前广泛采用的碘电对有强腐蚀性,不利于封装,与染料能级匹配不好,严重限制了DSSC开路电压的提高。本项目以多酸为非碘电对构筑DSSC的电解质,克服碘电对缺点,提高光电转化效率。在项目执行期内,我们通过对不同类型的多酸化合物进行筛选,开发出几种新型多酸基非碘电对,并将其应用于DSSC电解质中。我们以两种Anderson型多酸(AlMo6-CuI/II-phen和 CrMo6-CuI/II-phen)为氧化还原电对构筑DSSC的电解质,一系列性能测试表明该类多酸克服了碘电对的诸多缺点,成为新型DSSC电解质的候选体。与Cu-phen-DSSC相比,AlMo6-Cu-phen-DSSC短路电流增加了2.2倍,开路电压增加了26.8%,光电转换效率增加了3.93倍。同时,我们将Keggin型多酸{CoIIIW12/CoIIW12}作为电对引入DSSC中,对电对的浓度和比例及添加剂浓度进行优化,采用钴电对最佳电解质配方测试了电池的性能,这是首例纯无机多酸电对在DSSC中的应用。此外,我们对13种多酸进行能级调控,筛选出一种D-A型多酸{SiW9Co3}并将其负载于 TiO2光阳极上,将DSSC的光电转换效率提高到8.53%,提高了25.6%。另外,我们将两例有机锡功能化的多酸(GeW9-Cu/Co-SnR)与单壁碳纳米管(SWNT)组装成复合对电极应用在DSSC中。研究表明SWNT/GeW9-Cu-SnR-DSSC和SWNT/GeW9-Co-SnR-DSSC的光电转化效率为6.20%和6.32%,与Pt接近(6.29%),明显高于SWNT/GeW9-DSSC和SWNT/GeW9Cu4-DSSC,表明有机锡的引入加速了电子传递,提高了光电转化效率。此外,我们以夹心型锗钨酸盐掺杂的TiO2光阳极吸附N719构筑成共敏电极,比单独N719敏化的DSSC光电转化效率提高了19.4%。最近,我们将钒取代的同多钨酸盐与N719作为共敏化剂应用于DSSC中,光电转换效率达到7.05%,与纯P25相比提高了21.6%。而且我们又将SiW11V/石墨烯纳米复合物引入TiO2 膜中,展示出很好的光伏响应。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
低轨卫星通信信道分配策略
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
多酸型染料敏化氧化锌纳米晶太阳能电池的研制
多碘阴离子掺杂光学散射型固态电解质在染料敏化太阳能电池的应用研究
基于液晶构建长程有序非碘电对通道强化染料敏化太阳电池性能
用于p-型染料敏化太阳能电池的多酸基染料理论设计与性能研究