The Connecting Spacecrafts with Variable Joint which is consisted of multi-arm spacecraft and non-cooperative target will take a significant role in the complex space missions in the future. The existing dynamics modeling methods of multibody system are supposed to fail to autonomous on-orbit reconstruction of the Connecting Spacecrafts, even, the intellectual system of the strong non-linear coupling suppression is not yet perfect, in the real time exactly operating process. To meet the above-mentioned requirements, we look for the innovational autonomous on-orbit reconstruction method of dynamics and effectiveness algorithm. The genetic metamorphic theory which is based on the mechanical nuclear matrices is raised, in order to describe the construction and evolution on the Connecting Spacecrafts with Variable Joint, develop a quick on-orbit self-identification research on its topological configuration and non-cooperative targets parameters, and construct a open and closed combined structure loops system consisting of rigid and flexible dynamic models. The genetic metamorphic theory, can be regarded as a guide to achieve quick self-reconstruction of its dynamic models while configuration evoluting by making the mechanical genes be extracted from variated and injected to the mechanical the mechanical cell matricies. On the base of singular perturbation method, we research on the dynamics of fuzzy connecting systems and divide the dynamics model into two branches. After that, the extended time domain collocation is worked out for the flexible vibration branch. In addition, it can also be used to reduce its dimensionality and simplifize in the condition that component movement parameters are correlated.The tipical missions should be controlled coordinatedly, simulated, and vertificated, including variable joint, adjusting the relative position and attitude between the platform and target within the attitude constraits of the Connecting Spacecrafts with Variable Joint. The research on the program has both theoretical and applied values, in the implementation of on-orbit precise operation missions.
由多臂平台与非合作目标构成的空间变连接联合体是未来复杂空间操作的主角。由于现有理论局限性,现有理论难以自主、快速实现联合体在轨精细操作与控制。本项目针对上述需求,旨在完善联合体特性认知,探索自主动力学建模与快速解算新方法。内容包括:1)提出遗传变胞理论,实现联合体的构态及拓扑描述。2)借鉴奇异摄动思想,建立具有拓扑运动和柔性振动双通道的开闭链混合系统动力学模型,并采用拓展时域配点法对柔性振动通道进行快速精确求解。3)当联合体构态发生演化时,通过对遗传变胞理论中机构基因的提取、变异、注入实现动力学模型自主重建,进行降维优化。4)针对上述研究要点,研究操作任务多重因素耦合效应,搭建平台/目标变连接—相对姿态调整任务仿真平台,开展仿真验证误差分析。本项目在变连接系统力学建模理论与解算算法方面有特色和创新,成果可为多臂平台控制系统设计奠定基础,对于复杂在轨操作实施具有重要的科学意义和应用价值。
由多臂平台与非合作目标构成的空间变连接联合体是未来复杂空间操作的主角。由于现有理论的局限性,难以自主、快速实现联合体在轨精细操作与控制。本项目针对上述需求,完善了联合体特性认知,探索出一套自主动力学建模与快速解算新方法。内容包括:.1)提出了遗传变胞理论,实现了联合体的构态及拓扑描述。.2)借鉴奇异摄动思想,建立了具有拓扑运动和柔性振动双通道的开闭链混合系统动力学模型,并采用拓展时域配点法对柔性振动通道进行了快速精确求解。.3)当联合体构态发生演化时,通过对遗传变胞理论中机构基因的提取、变异、注入实现了动力学模型自主重建,并进行降维优化。.4)在上述研究内容的基础上,研究了操作任务多重因素耦合效应,搭建了平台/目标变连接—相对姿态调整任务仿真平台,开展了仿真验证误差分析。.本项目在变连接系统力学建模理论与解算算法方面有特色和创新,成果为多臂平台控制系统设计奠定了基础,对于复杂在轨操作实施具有重要的科学意义和应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
内点最大化与冗余点控制的小型无人机遥感图像配准
氯盐环境下钢筋混凝土梁的黏结试验研究
基于分形维数和支持向量机的串联电弧故障诊断方法
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
遥感影像辐射地形校正建模及解算方法研究
基于质量迁移指纹和GRACE数据解算地心运动及地球动力学扁率时变
GEO导航卫星三频模糊度快速解算方法研究
基于格理论的高维模糊度快速解算方法研究