Core-shell structural doped graphene/nanodiamond (G/ND) composite with a ND core covered with B or N doped graphene layer is prepared by vacuum annealing ND or plasma treating ND in the B or N-contained atmosphere. The doped G/ND is expected to be a novel electrocatalyst support with an excellent conductivity originated from the graphene layer, high thermal and chemical stabilities attributed to the ND core, and a high catalytic activity for oxygen reduction reaction due to the B, N doping. The problem of the facile stack aggregate can be avoided and the controllable mesoporous channels would form when the doped G/ND is used as an electrode material instead of pure planar graphene. An isothermal hydrolyzing below boiling temperature is carried to deposit nano oxides on the doped G/ND aiming to prepare a platinum-free catalyst with a high catalytic activity and a high stability for oxygen reduction reaction. A low platinum electrocatalyst is designed using the doped G/ND as a support. An anchoring effect of the B or N doping and the defects in the graphene layer on Pt nanoparticles results in an improved stability and dispersity of Pt catalyst, as well as a reduced Pt loading. The research focuses on ND surface graphene transformation and B, N doping mechanism. The aim is to achieve controllable preparation of doped G/ND composite with desired structure and properties. An exploration on the synergetic catalytsis mechanism of Pt and B, N-doped graphene layer is an important research part in this project. The design and preparation of a Pt electrocatalyst with low cost, high catalytic activity, and high stability will promote the applications of the fuel cells in wide fields.
本项目在含有B、N原子的气氛中真空热处理或放电等离子体处理纳米金刚石(ND),制备表面B、N掺杂石墨烯(G)壳层包覆ND的掺杂G/ND核壳纳米复合粒子。以掺杂G/ND作为新型电催化剂载体材料,G壳层赋予其良好的导电性,ND芯部具有高热稳定性及化学稳定性,可避免传统石墨烯叠聚问题,构造可控的介孔通道,B、N掺杂可提高对氧还原反应的催化活性。采用非沸腾恒温水解在掺杂G/ND表面沉积纳米氧化物,制备高催化活性的氧还原非铂催化剂。掺杂G/ND作为Pt催化剂载体,通过掺杂及缺陷位对Pt粒子的锚定作用,提高Pt粒子的稳定性及分散性,减少Pt的装载量,获得高效稳定的低铂催化剂。本项目重点研究ND表面石墨烯转化及B、N掺杂机制,获得结构和性能可控的掺杂G/ND复合纳米粒子;探索掺杂G壳层与纳米氧化物或Pt金属的协同催化作用,设计制备低成本、高活性、高稳定的非铂或低铂电催化剂,促进燃料电池的广泛应用
本项目针对目前燃料电池中常用的铂基金属催化剂高成本、低寿命的问题,提出了基于高稳定纳米金刚石(Nanodiamond-ND)的非铂及低铂催化剂的制备研究。研究内容包括:以ND为高稳定的基体材料,经过高温热处理,使其表面形成B、N掺杂的石墨烯(G)壳层,芯部保留金刚石结构,获得具有壳核结构的掺杂G/ND纳米粒子。B、N掺杂的G壳层具有优异的氧还原反应(ORR)催化性能,是优良的非铂催化剂,同时ND芯部具有高热稳定性及化学稳定性,可提高催化剂的使用寿命。在ND表面沉积过渡金属氧化物或氢氧化物,通过与氮源一起热处理,可以获得Fe-N-或Co-N-G/ND,进一步提高氧还原催化活性,同时对析氧反应也具有催化作用,是一种非贵金属双功能催化剂。以ND、G/ND、氧化物/G/ND等作为高稳定的Pt催化剂载体,通过表面G层或氧化物粒子对Pt粒子的锚定作用,提高Pt粒子的稳定性及分散性,减少Pt的装载量,同时利用ND表面氧化物等与Pt协同催化效应,获得高效稳定的低铂催化剂。本项目重点研究了ND表面石墨化转变及B、N掺杂机制,获得不同类型的掺杂G/ND复合纳米粒子;探索掺杂G壳层与纳米氧化物或Pt金属的协同催化作用,设计制备了低成本、高活性、高稳定的非铂或低铂电催化剂,促进燃料电池的广泛应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
低轨卫星通信信道分配策略
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
低铂/非铂氮掺杂碳气凝胶复合氧还原催化剂的结构及性能研究
石墨烯负载新型铂基核壳凹型纳米晶的可控制备及其催化性能研究
基于置换反应制备铂基合金纳米树突/石墨烯复合材料及其电催化甲醇氧化性能研究
纳米炭负载(铜银)核(铂)壳纳米催化剂的制备及其催化性能研究