The low efficiency of light energy conversion is a major bottleneck of photosynthetic biological hydrogen production. Exploration of efficient approaches for improving light energy conversion efficiency is crucial for promoting the development of photosynthetic biological hydrogen production. The aim of this project is to improve the light energy conversion efficiency via constructing a solar photosynthetic biological hydrogen production test system, investigating the light disturbance and microbial metabolic mechanism during the photosynthetic biological hydrogen production process, exploring the response of macroscopic system and microscopic system of photosynthetic biological hydrogen production to unsteady illumination, and analyzing the mechanism of light disturbance. A mathematical model of light disturbance will be established to analyze the effect of light disturbance on the light energy conversion efficiency and hydrogen production of the photosynthetic biological hydrogen production system, and to propose the way to enhance the orientation expression. The multi-disciplinary research method will be used to reveal the intrinsic correlation between light disturbance and microbial community structure and metabolic pathway of photosynthetic bacteria, and to obtain an approach for improving the conversion efficiency of light energy at the microscopic scale. An energy balance analysis method for the solar photosynthetic biological hydrogen production system will be established to evaluate the influence of the light disturbance on the total energy balance of the system, and to obtain the adjustment mechanism for maximizing the system efficiency. This project will explore a novel idea for the selection of strategies to improve the efficiency of light energy conversion. It is expected that the outcomes of this project will be of important theoretical value and potential application prospect.
光能转化效率低是光合生物制氢领域存在的一个普遍问题,探索提高光能转化效率的途径对推动光合生物制氢的发展至关重要。本项目研究太阳能光合生物制氢过程中的光扰动效应及微生物代谢机制,旨在提高光能转化效率。构建生物质太阳能光合生物制氢试验系统,探究光合生物制氢宏观系统和微观系统对非稳态光照的响应,分析光扰动效应的作用机理;建立光扰动效应数学模型,分析光扰动效应对光合生物制氢系统光能转化效率和氢气产量的影响规律,提出定向强化表达的途径;采用多学科交叉的研究方法,揭示光扰动效应与光合产氢微生物的群落结构和代谢途径的内在关联机制,得出微观尺度提高光能转化效率的方法;建立太阳能光合生物制氢系统的总能量分析方法,探明光扰动效应对系统总能量平衡的影响规律,获取系统效率最大化的调节机制。本项目的研究可为提高光能转化效率方式的选择拓展新的思路,研究结果将具有重要的理论价值和潜在的应用前景。
本项目以C3能源作物芦竹为原料,研究了光合生物制氢宏观系统和微观系统对非稳态光照的响应特性,揭示了光扰动效应的作用机理,获得了光扰动效应对光合生物制氢系统光能转化效率和氢气产量的影响规律,探明了光扰动效应与光合产氢微生物的群落结构和代谢途径的内在关联机制,阐明了光扰动效应对系统能量转化的影响规律。获取了定向调控的途径,提高了光合生物制氢系统的光能转效率。主要研究结果表明,(1)24h 暗+24h 光的扰动模式能够显著提高光合生物制氢过程的累积产氢量(产氢量为390.9mL/g TS 细胞干重)和光能转化效率(相较于连续光照提高了114.7%);此外,接种后黑暗间歇更有利于提高产氢量;(2)光合生物制氢过程的第24h,光照强度由初始的3000Lux 提升到6000Lux后,累积产氢量相较于对照组提高了19.5%,然而光强扰动并不会对酸性代谢产物造成显著影响;(3)采用底物预处理,复合底物发酵,底物循环再利用等方法都可以定向提高光合生物制氢过程的累积产氢量。本项目构建的光扰动模式,可为光合生物制氢的工业化应用提供理论支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
特斯拉涡轮机运行性能研究综述
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
太阳能光合生物制氢体系及其光谱耦合特性研究
光合生物制氢体系的热效应及其产氢机理研究
光生物制氢超声强化研究
太阳能生物光解水制氢系统的研究