Thermal radiative properties and its control method based on thermochromic film (TCF) belong to the hot topics of micro/nano thermal radiation content-area. It is also the frontier topics of a soaring thermal control technology referring to multi-interdisciplinary subject intersected by material, magnetoelectronics, thermal physics, and measurement, etc. In the applying program, the thermal radiative properties and its control mechanism will be investigated in the complex flexible TCF with heterostructures. The research contents is composed of four parts as follow: (1) the theory model about thermal radiative properties of complex flexible TCF will be constructed, the main influence factors will be discussed in order to suggest the optimum heterostructures. (2) the preparation method of complex flexible TCF will be presented, and its transition behaviour will be discussed from temperature, atmosphere condition, and material. On the basis of above investigation, one can expect to obtain a large-scale TCF with centimeter size. (3) The experimental investigation will be performed to measure the thermal radiative properties, i.e., solar abosrptance and emittance. The influence of structure, thickness, and bend state on the thermal radiative properties will be explored in order to enhance the ability of thermal radiation dissipation. (4) The adjustable thermal radiative properties will be further deepened under strain field, electric field, temperature field, and magnetic field. The transport mechanism of carrier in different field conditions will be investigated. The adjustment mechanism of thermal radiative properties will be expounded under the multi-field coupling. It is worth promising that the research content will be further expanded in the thermal radiation content-areas by the program. The obtained research achievement will service the novel smart thermal control technology which will meet the requirement of the adaptive temperature adjustment of electric devices, and even the progress of engineering application based on TCF will be promoted.
热致变色薄膜(TCF)辐射特性调控研究属于微/纳尺度热辐射领域的研究热点,是多学科交叉的新兴热控技术前沿课题。本项目针对高性能复合TCF技术需求,拟开展异质结复合柔性TCF辐射特性及其多场调控机制研究。具体包括:(1)建立异质结复合TCF辐射特性理论模型,分析其主要影响因素,指导最佳异质结设计;(2)实验研究复合柔性TCF的制备方法,分析TCF相变特性的影响机理,实现柔性TCF的大尺寸可控制备;(3)实验测试异质结复合柔性TCF辐射特性,研究其辐射特性的影响规律,揭示其辐射特性转变机制,评估其辐射散热能力;(4)研究力-热-电/磁多场耦合作用下复合TCF热辐射特性及传输机理,探讨场诱导载流子浓度分布规律,揭示多场耦合作用下TCF辐射特性调控机制。该项目对于丰富热辐射基础理论与方法的研究内涵,探索新兴智能热控技术,满足热控系统智能控温需求,推动TCF的工程化应用进程有重要的学术意义。
项目开展了异质结复合柔性热致变色薄膜辐射特性及其控制方法研究。对热致变色薄膜进行了结构设计和辐射特性研究,建立了柔性热致变色薄膜辐射特性理论计算模型,探索了钙钛矿-透明层-金属的多层膜结构对大气窗口内的光谱选择性控制和动态调控。研究了热致变色薄膜的柔性化方法,探索了温度、气氛、应变对薄膜辐射特性的影响。研究了柔性热致变色薄膜的鲁棒性,探索了角度、弯折对薄膜的影响。研究了多场耦合作用下柔性热致变色薄膜辐射特性调控机制,探索了电场对薄膜辐射特性的影响。计算结果表明,高温LCMO多层膜结构在大气窗口内存在发射率选择性增强,其高温发射率和高低温发射率调节范围较块体结构有所改善,并能通过LCMO层和SrTiO3层的厚度变化对发射峰的位置和发射率的大小进行调控。实验结果表明,不同厚度的异质结热致变色薄膜均显现出发射率可调特性,且调节范围随厚度的增加而变大直至600nm后调节范围变化趋于稳定。鲁棒性测试结果表明,在角度变换过程中,柔性热致变色薄膜的辐射特性不会由于电磁波光程的变化而发生明显的改变,且多次弯折后其依旧保持最初的性能。电场调控实验结果表明,电场对薄膜反射率产生抑制作用,且电场对薄膜长时间的持续作用会使薄膜热辐射性能产生整体变化。
{{i.achievement_title}}
数据更新时间:2023-05-31
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
极地微藻对极端环境的适应机制研究进展
高庙子钠基膨润土纳米孔隙结构的同步辐射小角散射
简化的滤波器查找表与神经网络联合预失真方法
压电驱动微型精密夹持机构设计与实验研究
热致变色智能薄膜辐射特性及其控制方法研究
热致变色功能材料表面辐射特性转变机制与控制方法研究
铁电/铁磁复合薄膜多场耦合特性的相场研究
极化调控多铁BiFeO3异质结薄膜的电致阻变与光伏效应及其耦合研究