This project is to investigate the distributed H-infinity consensus problem of nonlinear multi-agent systems with external unmodelled disturbances. This problem aims at designing a distributed feedback controller such that the closed-loop system not only encompasses internal asymptotic consensus when the disturbances vanish, but also assures certain disturbance attenuation performance constraint. Compared with the linear multi-agent system, the nonlinear multi-agent system is more general in practice. Thus, distributed H-infinity consensus of the nonlinear multi-agent systems is much more interesting and significance to the theory and engineering research, and deserves further investigation. For this purpose, this project is devoted to developing a novel systematic framework for the distributed H-infinity consensus problem of nonlinear multi-agent systems. More specific, this project first establishes the solvability condition for solving the distributed H-infinity consensus problem of nonlinear multi-agent systems. Then, this project presents effective design methods of both state feedback controller and output feedback controller that solve the distributed H-infinity consensus problem. Moreover, by using the developed distributed H-infinity consensus methods, this project solves the distributed control problem of vehicular platoons. The study of this project not only is of theoretical significance in consensus of nonlinear multi-agent systems, but also provides novel methods in engineering applications.
本项目拟针对受到外部未建模扰动影响的非线性多自主体系统,研究分布式H-无穷一致性控制问题。该问题要求设计分布式反馈控制器使得闭环系统在实现内部(扰动消失时)一致性的同时能够满足给定的扰动抑制性能指标。与线性多自主体系统相比,非线性多自主体系统更具有一般性,其分布式H-无穷一致性控制问题研究更具有理论价值和工程意义,也更具有挑战性,引起了国内外学者们的关注。为此,本项目拟基于增量耗散理论以及内模原理发展一套完善的非线性多自主体系统的分布式H-无穷一致性控制理论体系。特别地,本项目将建立分布式H-无穷一致性控制问题的可解性条件,给出有效的分布式状态反馈以及输出反馈H-无穷一致性控制器设计方案。并基于所发展的一致性控制理论,设计分布式反馈控制器以解决车辆队列系统的队形控制问题。本项目的研究不仅推动非线性多自主体系统一致性理论的发展,而且为车辆队列系统等相关工程控制问题提供新思路和新方法。
在实际控制系统中,系统不可避免的受到各种外部扰动、不确定性的影响。这些外部扰动、不确定性使得所构造的反馈控制器难以实现预期目标,导致多自主体系统的一致性分析与控制设计问题变得复杂。与线性多自主体系统相比,非线性多自主体系统更具有一般性,其分布式一致性控制问题研究更具有理论价值和工程意义,也更具有挑战性,引起了国内外学者们的关注。为此,本项目面向受到外部扰动、不确定性影响的非线性多自主体系统,基于内模原理,发展了分布式H-无穷一致性控制技术,完善了分布式鲁棒一致性控制理论。基于发展的分布式鲁棒一致性控制理论,给出车辆队列系统的队形控制设计及多无人机编队控制设计。并进一步拓展分布式鲁棒一致性控制理论,为不确定的、受外部扰动影响的多自主体系统给出分布式优化与博弈设计方法。在本项目资助下,共发表(含在线发表)国际重要学术期刊与会议论文23篇,其中系统控制领域顶级期刊IEEE Transactions on Automatic Control与Automatica论文4篇,权威期刊IEEE Transactions on Cybernetics,SCIENCE CHINA Information Sciences, International Journal of Robust and Nonlinear Control论文4篇,培养培养一名博士毕业生、三名硕士毕业生。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
基于分形L系统的水稻根系建模方法研究
粗颗粒土的静止土压力系数非线性分析与计算方法
硬件木马:关键问题研究进展及新动向
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
分布参数系统的H-无穷控制理论
基于一致性区域的多自主体系统分布式控制研究
非线性多自主体系统的分布式输出调节问题及其瞬态性能研究
多自主体系统分布式优化滤波问题研究