Currently, the dye-based traditional color rendering methods can lead to the serious environmental pollution during the production and application, and gradually become the main factor that restricts the development of the display and color printing industry. The only way for the long-term development of the printing industry is to propose an energy-saving, low-cost and high-performance color rendering method. With the rapid development of nanotechnology, structural color based on nanophotonic structure has attracted a plenty of attention due to its salient advantages of environment-friendly, flexible tunability and non-fading property. However, the currently reported structural color filtering devices still face the serious technical problems of low efficiency, low resolution, complicated fabrication process, inability to mass production, and so on. In view of this, this project innovatively proposes an highly-efficient structural color filtering device with a high resolution beyond the diffraction limitation, by taking advantage of the hydrogenated amorphous silicon (a-Si:H) metasurface. And, the ultra-thin nanoporous anodized aluminum oxide (AAO) film is specially applied as a mask to realize the fabrication of large-area structural color. In this project, a new and effective method is proposed for the improvement of performance and fabrication process of the structural color filtering device by studying the resonance mode and the spectral modulation effect of a-Si:H metasurface and the thorough investigation of low-cost large-area manufacturing process. Meanwhile, it can not only provide guidance for the research of other dielectric metasurface-based optical devices, but also has an important scientific significance for promoting the practical application of structural color filtering device in high-resolution printing and display.
当前,基于色素的传统颜色呈现方式在生产和应用中对环境造成严重污染,逐渐成为制约显示、印刷业发展的主因。提出节能环保、低成本、高性能的新型着色方式,成为显示、印刷业长久发展的必由之路。随着纳米技术的飞速发展,基于纳米光子结构的结构色因其具有环境友好、灵活可调、不褪色等优势,倍受关注。但是,目前报道的结构色器件仍面临效率低、分辨率低、制备工艺复杂、无法量产等技术难题。鉴于此,本项目创新性地提出利用氢化非晶硅a-Si:H超表面实现具有超越衍射极限分辨率的高效结构色,并使用超薄纳米孔阳极氧化铝(AAO)薄膜作为掩膜版实现大面积制备。本项目通过对a-Si:H超表面共振模式和光谱调控效应以及低成本大面积制备工艺的研究,为结构色器件在性能与加工上的改进提出了全新有效的思路,对将介质超表面应用于其它光学器件的研究提供了指导,并为推动结构色器件在高分辨率显示、印刷等领域的实际应用具有重要科学意义。
基于纳米结构的超表面因其灵活的电磁调控特性是当前的一个前沿研究热点。本项目主要围绕a-Si:H超表面实现结构色和低成本大面积制备工艺展开,通过项目的实施比较全面地完成了既定的研究计划。主要的研究成果包括:研究了基于纳米柱阵列的a-Si:H超表面中激发的晶格共振模式对光谱和颜色的影响机制,并实现了高饱和度、高稳定性结构色器件的设计;研究了基于一维纳米光栅阵列的a-Si:H超表面的偏振敏感光谱特性及背后的漏模共振模式,实现了偏振调控的高分辨率全彩图像加密;研究了基于双原子的a-Si:H超表面对于光强和相位的调制,在纳米尺度下实现了线偏振片,并应用于二值图像的显示和加密;研究了利用AAO纳米孔薄膜做模板的低成本大面积制备工艺,依托于热压法和热蒸发,利用AAO作为模板成功制备了不同尺寸、排列有序的纳米柱阵列,并应用于结构色形成和传感器领域。本项目获得的研究成果为拓展介质超表面在高性能结构色、信息加密、传感器等领域的应用和加快实际应用奠定了坚实的基础。.在本项目的资助下,共发表学术论文20篇,其中SCI检索期刊论文19篇,EI检索会议论文1篇,已授权发明专利2项,实质审查阶段中发明专利2项。超额完成了项目预定的研究目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
农超对接模式中利益分配问题研究
转录组与代谢联合解析红花槭叶片中青素苷变化机制
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
金属/a-Si:H界面的研究
a-Si:H/FLC高速空间光调制器研究
A-Si:H负电子亲和势光电阴极的研制
激光打印超分辨率等离激元结构色图案及颜色调控方法研究