This project is aimed at developing a solar driven aqua-ammonia resorption heat pump cycle with multiple internal heat recovery, and efficiently harvesting solar thermal energy for steady space heating, including in-depth analysis on improving dynamic solar thermal conversion, resorption thermodynamic cycle, heating capacity storage and delivering by aqua-ammonia solution concentration variation, et al. It is expected to set up the novel concept on the solar driven aqua-ammonia resorption cycle, in which a low pressure generator and a high pressure absorber are used to replace the conventional evaporator and the condenser in the absorption heat pump cycle, thus the rectifying component can be avoided and simplify the heat pump configuration, and can match the application of solar collector well. The mechanisms of this novel resorption heat pump, which is operated with the aqua-ammonia solution concentration variation, and fits well the dynamic solar thermal energy collection, will be extensively investigated. The working principle, involving the absorption and desorption processes at various pressures, the adjustments of internal pressure, and the heat recovery from different components, will be analysed in depth in order to improve the system efficiency comprehensively. An optimal resorption heat pump configuration with heating capacity storage without heat loss, long distance delivery for heating potential, as well as the reasonable variation of solution concentration, will be worked out. Also performed is the setup of a test fig regarding to the solar driven resorption heat pump, the test results will be used for validating a well-developed dynamic mathematical model. Moreover, an in-depth discussion and thermodynamic simulation and analysis will also be made. The outcome of this research is a novel aqua-ammonia resorption heat pump with internal heat recovery. It will pave the way for a high efficiency, steady solar heating method, and is potential to be a novel technical route for solar thermal application.
项目以太阳能氨-水再吸收多重回热式热泵循环建立和太阳能高效利用、稳定供暖为目标,通过太阳能动态高效集热、氨-水再吸收多重回热式热泵循环以及供热能力蓄存、输配相关基础问题研究,旨在发展一种适合太阳能驱动、能实现太阳能供暖倍增效应、无热损储存和输配热能、以低压发生器和高压吸收器分别替代蒸发器和冷凝器、无需精馏过程的太阳能氨-水再吸收多重回热式热泵循环。项目研究将揭示依靠氨-水工质对浓度差变化适应集热器动态温度变化的再吸收回热式热泵循环供热机理;研究循环内部发生器、吸收器工作压力调节、热量回收及多级运行提高循环效率的运行机制;构建利用工质对浓度差变化实现无热损供热能力储存、以及供热能力输配的优化方案;完成太阳能热泵循环热动力学仿真和实验验证,分析系统热动力学特性。研究成果将建立一种新型太阳能氨-水热泵循环方式,可为利用太阳能实现清洁供暖提供高效、稳定的方案,为太阳能热利用发展拓展新的研究方向。
项目以太阳能氨-水再吸收多重回热式热泵循环建立和太阳能高效利用、稳定供暖为目标,通过太阳能动态高效集热、氨-水再吸收多重回热式热泵循环以及供热能力蓄存、输配相关基础问题研究,旨在发展一种适合太阳能驱动、能实现太阳能供暖倍增效应、无热损储存和输配热能、以低压发生器和高压吸收器分别替代蒸发器和冷凝器、无需精馏过程的太阳能氨-水再吸收多重回热式热泵循环。项目研究将揭示依靠氨-水工质对浓度差变化适应集热器动态温度变化的再吸收回热式热泵循环供热机理;研究循环内部发生器、吸收器工作压力调节、热量回收及多级运行提高循环效率的运行机制;构建利用工质对浓度差变化实现无热损供热能力储存、以及供热能力输配的优化方案;完成太阳能热泵循环热动力学仿真和实验验证,分析系统热动力学特性。研究成果将建立一种新型太阳能氨-水热泵循环方式,可为利用太阳能实现清洁供暖提供高效、稳定的方案,为太阳能热利用发展拓展新的研究方向。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于多模态信息特征融合的犯罪预测算法研究
坚果破壳取仁与包装生产线控制系统设计
肉苁蓉种子质量评价及药材初加工研究
天津市农民工职业性肌肉骨骼疾患的患病及影响因素分析
高温吸收式热泵离子液体型新工质热力学性质与循环特性
太阳能耦合吸附热泵循环特性研究
新型塔式第二类吸收式热泵循环过程及系统的研究
新型塔式第二类吸收式热泵循环过程及系统的研究