Optical quantum states are the basic unit of information and communications carriers in quantum information science; the generation of the optical quantum states is one of the important researches in quantum information fields. Optical quantum states with continuous variable (CV) have been attracted wide interests due to its potential advantages such as high efficiency detection and bright output fields, and there have already been much advancement about the generation, control, transmission of CV quantum states. The generation of quantum states at 1.5 μm (optical communications band) with continuous variable can transmit with the lowest decoherence properties in a traditional silica-based telecommunication glass fibers due to its lowest optical loss. Meanwhile a quantum state at 780 nm (corresponding to the atomic absorption lines) can be obtained by quantum state frequency conversion at 1.5 μm, which would be used as quantum information storage. And a complete practical quantum communication system will be combined by lowest loss transmission and storage nodes. The main objective of this project is to obtain CV squeezed states and entangled states at 1.5 μm, and to demonstrate the long distance transmission properties of quantum states in optical fiber. A complete description of the quantum state by the Wigner function reconstruction will produce the evolution of quantum states in the phase space, which can be used to study detailed dissipation and decoherence in quantum state transfer process and give a possible compensation.
光场量子态作为量子信息学科的基本信息单元和通信载体,它的产生一直是该学科重要基础研究内容之一。连续变量光量子态由于其探测的确定性、输出的高亮性受到广泛的关注,并在光场的产生、控制、传输等方面均有突破。连续变量1.5μm光通信波段量子态的制备,可以使连续变量量子态以最低损耗在光纤中传输,最大程度保留其量子特性,提高量子态的传输效率;同时该波段量子态光场通过频率变换,可以获得780nm(对应原子吸收谱线)量子态光场,可以为量子信息网络提供存储节点,将传输和存储有机结合起来可以形成一个完整的量子通信系统,为实用化的量子通信奠定了基础。本课题主要目标是获得连续变量1.5μm光通信波段压缩态和纠缠态光场,并研究连续变量1.5μm量子态在光纤中的传输特性,通过对量子态的Wigner函数重构研究量子态在相空间的演化过程,对于连续变量量子态在光纤传输过程中的耗散和消相干等做详细的研究并提出可能补偿的方法。
连续变量非经典光场作为量子信息科学研究中的重要资源之一, 不仅可用于实现突破散粒噪声极限的精密测量、与原子相互作用的量子存储、操控等研究;还可以用于实现量子离物传态、量子密集编码和量子保密通信等研究。1.5 μm波段非经典光场由于其在光纤中可以实现最低损耗传输,提高量子态在光纤中的传输效率,是实用化长距离量子信息研究有效的量子资源。.本项目围绕连续变量1.5 μm非经典光场的产生及其在光纤中的传输特性展开了研究:利用自制的模式清洁器过滤1.5 μm激光的额外噪声,获得低噪声高功率窄带宽的1.5 μm激光光源,其强度噪声在分析频率4 MHz处达到散粒噪声极限;利用准相位匹配晶体外腔谐振高效倍频过程获得了780 nm激光光源,倍频效率高达85%,输出功率达1 W;利用光学参量振荡过程,获得了连续变量1.5 μm光通信波段压缩真空,压缩度达6.8±0.2 dB(考虑到探测效率,压缩度达11.2 dB);将获得的压缩态光场通过50/50分束器干涉耦合获得了纠缠度达5.4 dB的光通信波段连续变量量子纠缠态光场;利用本底振荡光与压缩真空偏振复用传输、半波片位相补偿等方法,实现了连续变量1.5 μm压缩态光场30 km的光纤传输,同时利用量子层析技术分别重构了压缩态在光纤传输前后Wigner函数,分析了压缩态在光纤传输过程中的演化特性。本项目的开展为后续连续变量量子态应用于基于光纤的实用化长距离量子通信提供了理论和实验依据,具有一定的科学意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
IRE1-RACK1 axis orchestrates ER stress preconditioning-elicited cytoprotection from ischemia/reperfusion injury in liver
1.3μm波段连续变量量子纠缠态的制备及其在光纤中传输特性的研究
1.5μm波段宽调谐飞秒光子晶体光纤参量振荡器
基于1μm/1.5μm双波段脉冲光纤激光器的超宽带超连续谱光源研究
1.5μm量子纠缠态产生源的研究