Facing the rapid development of heavy-duty robots and large-power high-end equipment, traditional driving methods cannot meet the requirements of high power density, high precision and high energy efficiency at the same time, and face new challenges..This project is an innovative research on heavy-duty electro-hydraulic control system with high power density, high precision and high energy efficiency. The main innovations and research contents are given as follows: 1) A hybrid drive system integrated of driven and regeneration for heavy load with electric motor direct drive and hydraulic drive is proposed. An electric motor is employed to drive the cylinder directly to achieve high precision motion control. Hydraulic is used to drive the cylinder to achieve high power density. Under negative load conditions, the potential energy is regenerated with electric motor and accumulator to improve energy efficiency. 2) Explore the working mechanism of novel drive system. 3) Explore the electro-hydraulic coupling mechanism of motor-hydraulic-cylinder and the dynamic coordination method of electro-hydraulic energy. 4) The energy saving and control characteristics of the novel drive system with different load conditions and different working modes are studied. Through the research of this project, the advantages of motor and hydraulic in accuracy, energy efficiency and power density are brought into play, and provide a new type of heavy-duty electro-hydraulic drive system with excellent performance for high-end heavy-duty robots and high-power high-end equipment.
面对重型机器人和大功率高端装备的高速发展,传统驱动方式无法同时实现高功率密度、高精度和高能效的要求而面临新的挑战。.本项目正是针对高功率密度、高精度和高能效的重载电液控制系统开展的创新研究。主要创新和研究内容为:1)提出一种面向重载的电机直驱和液驱复合驱动与再生一体化驱动系统。该系统采用电机直接驱动油缸,实现高精度运动控制,利用液压复合驱动油缸实现高功率密度;在负值负载工况,结合电机和蓄能器实现能量回收和再生一体化,提高系统能效。2)探索电机直驱和液驱复合驱动与再生一体化驱动系统的工作机理;3)探究电机-液压-油缸的机电液耦合机制和机电液能量动态协调方法;4)研究不同负载工况和不同工作模式的新型驱动系统的节能特性和控制特性。通过本项目研究以求发挥电机和液压各自在精度、能效和功率密度等方面的优势,为高端重型机器人和大功率高端装备提供一种性能优异的新型重载电液驱动系统。
本项目针对机器人与高端装备等新兴领域高速发展对执行器驱动方式在效率、功率输出能力和控制精度等方面提出的高要求,考虑到单纯的电机驱动或液压驱动均难以同时实现高精度、高功率密度和高能效的问题。项目提出一种基于电机直驱和液驱复合驱动系统,采用电动/发电机通过滚珠丝杆驱动控制油缸活塞双向高精度运动的同时,利用液压复合驱动油缸活塞来实现高功率密度和快速响应。本项目深入探索机电液复合驱动构型原理、耦合特性、液电能量动态控制机制,并研究其节能特性和操控特性。.项目从理论出发,建立电液复合驱动系统的数学模型并进行分析,为了力求电液复合驱动系统各子系统能充分发挥其自身优势,以能量利用效率为主要目标,辅以控制精度作为次要目标,对系统最佳驱动力分配进行寻优,最终得出电机驱动系统最优驱动力。在此基础上进一步探讨电液复合双驱的控制算法,以进一步提高系统的控制精度和能效。通过本项目的研究可对重型机器人及高端装备的新型高精度、高功率密度驱动方式提供理论设计依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
双吸离心泵压力脉动特性数值模拟及试验研究
动物响应亚磁场的生化和分子机制
分腔容积直驱电液控制系统能量高效转换利用的理论与方法
直驱式开关磁阻平面电机参数优化及其控制研究
主动配流式电磁直驱静液作动器多学科设计与协调控制
面向液驱混合动力系统的驱动/传动一体化轮毂马达构型综合及驱动控制机理研究