Low loss, low delay, high frequency and high speed signal transmission such as military satellite radar antenna, 5G communication base station core router, high-speed rail signal transceiver module and so on, require low dielectric constant, low dielectric loss tangent angle, high reliability and high frequency microwave boards manufacturing. Mechanical drilling is carried out on high frequency microwave board with soft-hard-brittle state, complex structure and high anisotropy. It is the core bottleneck to create 0.1mm to 0.25mm diameter micro-holes, and achieve high quality micro holes with little or no chip sticking and burr. This project is to reveal the deformation and removal mechanism of PTFE of high frequency microwave boards. The chip clogging mechanism will be investigated. The heat generation, heat conduction and temperature field variation will be revealed. Design principles of new structure coating micro drills with good chip removal performance and abrasion resistance will be put forward. The micro drill wear mechanism will be investigated. The change rule of the adaptability and structure of heterogeneous multi-layer electronic material, the matrix material properties of micro drills, the tool coating, and the bonding of coating and matrix of micro drills at low temperature will be revealed. The control technology for tool wear, chip sticky and burrs will be put forward. A low temperature micro-drilling process for high quality micro-holes will be obtained. It has important academic value for the cutting theory, low temperature machining technology, and the extreme size tools designing and manufacturing.
军用卫星雷达、5G通信基站大容量核心路由器、高铁信号收发部件及汽车防撞雷达等低损耗、低延迟高频高速信号传输,要求制造低介电常数、低介质损耗正切角、高可靠性高频微波板。在具有软硬脆不同状态、结构复杂、各向异性显著的高频微波板上进行机械钻削,获得直径0.1-0.25mm微孔,实现少/无钻屑粘黏和毛刺的高质量微孔是高频微波板制造的核心瓶颈。本项目揭示高频微波板材料在微钻切削力作用下的变形、切除及其切屑堵塞机制;揭示切削热生成、热传导及温度场变化规律;提出排屑性能好、耐磨损的新结构涂层微钻设计原则,掌握微钻磨损机制;揭示低温作用下多层异质复合电子材料性能的适应性与结构、刀具基体材料与性能、涂层以及涂层-刀具基体界面结合力的变化规律;提出微钻磨损、钻屑粘黏和毛刺控制工艺技术,获得高质量微孔低温钻削加工工艺。对于丰富复合材料切削加工理论、低温加工技术和极端尺寸工具设计制造理论与技术有重要的学术价值。
军用卫星雷达天线、5G通信基站核心路由器、高铁信号收发部件等低损耗、低延迟高频高速信号传输,要求低介电常数、低介质损耗正切角、高可靠性高频微波板制造。在具有软硬脆不同状态、结构复杂、各向异性显著的高频微波板上进行机械钻削,获得0.1-0.25mm直径微孔,实现少/无钻屑粘黏、毛刺的高质量微孔是高频微波板制造的核心瓶颈。本项目主要研究了高频微波板材料在常温/低温环境下的变形、切除以及切屑堵塞机制,提出了微孔切屑排屑控制方法;揭示了切削热生成、热传导及温度场变化规律,提出了多层异质复合电子材料微孔钻削热控制方法,显著降低了印制电路板钻削温度;分析了多层异质复合电子材料在常温/低温介质作用下的微细钻削微钻磨损机制,设计了排屑性能好、稳定性高、耐磨损的新型涂层微钻及新型结构微钻,提出微钻磨损控制技术,大大提高刀具抗磨损性能;揭示低温作用下多层异质复合电子材料性能的适应性与结构、刀具基体材料与性能、涂层以及涂层-刀具基体界面结合力的变化规律,分析了多层异质复合电子材料与不同低温冷却介质辅助加工工艺的适配性,获得了少/无钻屑粘黏、少/无毛刺孔位精度高、孔壁质量好的高频微波板低温微细钻削工艺技术。对于丰富复合材料切削加工理论、低温加工技术和极端尺寸工具设计制造理论与技术有重要的学术价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
超高速钻削多层高密度印刷电路板超微细孔加工研究
高长径比微细钻削刀具设计、制造与超声空化振动复合精密钻削研究
电子产品密集微细孔超高速精密钻削电主轴关键基础技术研究
陶瓷基复合材料的磨料水射流高效低损伤钻削机理研究