The initial conversion from physical energy to chemical energy in the photosynthesis reaction center is the key process in the organic world. This project is set to investigate this process by using the description of quantum heat engine for the photosynthesis reaction center. First, the reaction center will be modelled by comparing the theoretical and experimental ultra-fast, 2D, nonlinear, laser spectroscopy. The Hamiltonian of the energy donor and acceptor in the reaction center will be determined by using the evolution pictures of the ultra-fast, 2D, nonlinear, laser spectra, and the probability equations of charge distribution on different pigments in the reaction center and the quantum Langevin equations. Based on the Hamiltonian of the photosynthesis reaction center and its energy donor and acceptor, the physical model of the quantum dissipative heat engine for the photosynthesis reaction center will be set up. Second, the calculations of the heat and work for the quantum engine will be promoted from closed quantum heat engine model defined by Weimer et al., to the Markovian quantum dissipative heat engine model, and then to the non-Markovian quantum dissipative heat engine model. At last, by use of the non-Markovian quantum dissipative heat engine model, and the corresponding dynamics we will study the heat, work, and the conversion rate from heat to work for the photosynthesis reaction center of PSII, PC645, FMO,and PE545 etc., and the influences of coherence, entanglement, and non-Markovinity to the conversion rate will be investigated. It is expected that the results of the study could help to make use of the solar energy and the study of biological quantum heat engine.
光合作用反应中心物理能转化为化学能的过程,是有机世界最关键的一个环节。本项目,拟用量子热机描述与研究这一过程。首先,利用理论与实验超快二维非线性光谱相比较的方法,建立光合作用反应中心的物理模型,确定其哈密顿量;利用超快二维非线性光谱演化图,以及反应中心不同色素上电荷分布几率方程与量子朗之万方程,寻找光合作用反应中心能量的给体与受体,并确定其哈密顿量;在此基础上,建立光合作用反应中心量子耗散热机的物理模型。其次,将Weimer等人的量子热机中热与功的定义,由量子孤立系统推广到量子耗散系统,进而推广到非马尔科夫量子耗散系统。最后,用非马尔科夫量子耗散动力学与所建立的量子耗散热机模型,研究PSII、 PC645、 FMO、 PE545等光合作用反应中心的热、功以及热功转换率;并研究量子相干性、纠缠度、非马尔科夫度等量子效应对光合作用能量转换的影响。期望研究结果对太阳能利用与量子热机研究有所帮助。
通过对光合作用反应中心超快二维非线性光谱演化的理论模拟,结合光力系统的研究,确立了量子耗散系统--光合作用系统反应中心的物理模型(系统+环境)。发展了Born-Markov量子耗散动力学方法:即在传统Born-Markov,Redfield与Lindblad方程中减少了久期近似选项,并精确给出了计算方程系数的复数主值积分(传统方法忽略了该积分的虚部),使得基于Liouvlle- nov Neumann量子耗散动力学主方程新的可计算形式成为量子耗散动力学研究的高效而精确的动力学计算方法。将Weimer等人的两体量子热机的功与热的解析表达式推广到了耗散系统并用于量子热(冷)机中功与热的计算。用量子热机理论与发展的新的计算方法,研究了一类量子CNOT门操作的功热演化,研究了三种光合作用反应中心能量转化规律,并得到了它们热功转化效率相关的因素,为高效利用太阳能进行了非常有益的探索。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
敏感性水利工程社会稳定风险演化SD模型
空气电晕放电发展过程的特征发射光谱分析与放电识别
采用黏弹性人工边界时显式算法稳定性条件
基于抚育间伐效应的红松人工林枝条密度模型
非马尔科夫噪声下的量子参数估计研究
开放量子系统的非马尔科夫效应研究
量子系统的非马尔科夫动力学演化及其反馈控制
量子开系统的涨落效应及非马尔科夫时间演化