Osteoarthritis (OA) is a common disease, which brings a lot of pain to the patients. OA is difficult to cure due to the articular cartilage can’t regenerate by itself. Tissue engineering brings fresh hope to the repair of cartilage and the cure of OA. However, one limitation of tissue engineering is that the scaffold with consistent structure and similar mechanical properties to autologous cartilage can’t be easily fabricated. This research is planned to use the technique of 3D printing to print gelatin/glucosamine hydrogels layer by layer under the ultraviolet irradiation. It is supposed to regulate the proportion of gelatin and glucosamine in the process of printing according to the composition of cartilage to make layers of the scaffold have different degrees of crosslinking. Thus, the anisotropic gradient scaffold with different composition and mechanical properties between layers is fabricated, which has high resemblance to autologous cartilage. Then the swelling ratio, degradation degree and mechanical properties of the scaffold are evaluated and the relationship between the gradient structure and the mechanical properties of the scaffold is investigated. In the next step, bone mesenchymal stem cells and gelatin/glucosamine hydrogels are printed simultaneously to fabricate scaffolds with biological properties for cartilage tissue engineering. In the end, we are going to evaluate the biological properties of the gradient scaffolds and investigate the mechanism of the gradient structure acting on the cells.
骨关节炎是一种常见的疾病,给患者带来很大的痛苦。由于关节软骨再生困难,使骨关节炎难以治愈。组织工程技术为软骨的修复和关节炎的治疗带来新的希望,然而目前一个很大的瓶颈是不能制造出与自体软骨结构层次一致、机械性能相近的支架结构。本研究拟在紫外光照的条件下,利用3D打印技术对明胶/氨基葡萄糖水凝胶进行层层打印。在打印过程中,根据软骨的组成调控明胶/氨基葡萄糖的组分比例,使得不同层水凝胶的交联程度不同,从而制造出不同层间具有不同组分和机械性能的各向异性的梯度结构类软骨支架。预期得到的支架除了组分比例与自体软骨类似外,其机械性能也与自体软骨高度相似。检测不同结构的梯度支架的溶胀性能、降解性能和机械强度,研究支架的梯度结构与其机械性能的关系。将骨髓间充质干细胞与明胶/氨基葡萄糖同时打印,制造出具有生物学性能的软骨组织工程支架,检测该梯度结构支架的生物学性能,研究支架的梯度结构对细胞的作用机制。
组织工程技术是实现软骨再生的一个重要方法,为软骨损伤和关节炎的治疗带来新的希望。光交联甲基丙烯酰胺基明胶(GelMA)作为软骨组织工程支架材料,具有清洁、生物相容性好、可注射等优点。本项目利用氨基葡萄糖、明胶、纳米羟基磷灰石(nHA)、壳聚糖等生物相容性材料对其进行改性,通过3D打印制备了仿生梯度支架,拓展了其在骨软骨修复领域的应用。.本项目的研究内容可分为四个部分:.1. 合成了GelMA和丙烯酰胺基葡萄糖(AGA),通过紫外光交联成水凝胶,用于软骨缺损的修复。结果表明,相比纯GelMA组和口服氨基葡萄糖组,GelMA-AGA组具有更好的修复效果。.2. 设计并搭建了光交联生物3D打印平台,开发了GelMA/明胶“生物墨水”,通过在GelMA中加入明胶,改善了其在低浓度下的可打印性。结果表明,浓度配比为5/8%的GelMA/明胶具有与30% GelMA相似的打印精度,同时具有和5% GelMA相近的细胞相容性,是适合细胞打印的材料。.3. 通过3D打印,制备了上层为15% GelMA、中层为20/3% GelMA/nHA、下层为30/3% GelMA/nHA的梯度仿生骨软骨支架。该支架的下层具有比上层更加优异的力学性能,中间层则维持了各层的连续性和牢固结合。同时,支架具有与天然骨软骨相似的溶胀性能和降解性能。动物实验证明,该梯度支架能够有效地修复骨软骨缺损。.4. 针对GelMA水凝胶力学性能不足的问题,在GelMA中加入壳聚糖(CS),通过紫外光交联和碱化法形成了具有半穿(simi-IPN)和互穿(IPN)结构的GelMA-CS复合水凝胶。结果表明,具有IPN结构的水凝胶形成了面积更大、更加致密的孔壁结构,GelMA-CS的IPN结构显著提高了水凝胶的力学性能,并且兼具pH敏感性和细胞相容性。.综上所述,本项目通过对GelMA水凝胶的3D打印和改性研究,探索了其在软骨和骨软骨修复方面的应用,达到了预期研究目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
Combining Spectral Unmixing and 3D/2D Dense Networks with Early-Exiting Strategy for Hyperspectral Image Classification
敏感性水利工程社会稳定风险演化SD模型
结直肠癌肝转移患者预后影响
Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary
3D打印新型MeGO-GelMA水凝胶复合BMSCs支架构建分层带状组织工程软骨
双向梯度软骨支架的构建及关节软骨组织工程的实验研究
基于生物3D打印技术制备促血管化骨组织工程支架及其应用
基于3D打印及组织工程技术构建精确阴茎形态软骨支撑体