Surface modifiers which can endow nanoparticles with good water solubility and chemical stability will be designed and synthesized based on principle of molecular design. Resultant surface-modifiers will be adopted to prepare water soluble nanoparticles such as Cu, copper alloy, CuO, and CuS via solution chemical method and in situ surface modification route. Solution chemical method and in situ surface modification route can help to realize the preparation of desired nanoparticles with controllable size, composition, and morphology. Thanks to the strong interactions (chemical bond) between the surface modifiers and nanoparticles as well as the presence of polar groups in the surface modifiers, as-prepared surface-capped nanoparticles may possess good chemical stability and good water solubility as well. This will help to realize stable dispersion of nanoparticles in water. Furthermore, the tribological properties and thermal conductive behavior of surface-capped nanoparticles as additives of water-based cutting fluids will be examined, the relationship among the size, concentration, chemical composition, and microstructure of the surface-capped nanoparticles and their ribological properties and thermal conductive behavior will be investigated; and physical models will be established to elucidate the action mechanisms of the surface-capped nanoparticle additives. In one word, the present research will help to establish ground of materials and guidance of theory for the preparation and performance study of nanoparticles as additives of cutting fluids.
设计合成能够赋予纳米微粒良好水溶性和化学稳定性的表面修饰剂,采用液相化学方法和原位表面修饰技术制备水溶性铜及其合金、氧化铜、硫化铜等纳米微粒,并实现其粒径、组分及形貌的控制制备,利用修饰剂分子中的功能基团与纳米微粒的强(化学键)相互作用赋予纳米微粒良好的化学稳定性,利用修饰剂中的极性基团赋予纳米微粒良好的水溶性。从本质上解决纳米微粒在水基介质中的稳定分散问题。研究其作为水基切削液添加剂的摩擦学与导热性能,探讨纳米微粒粒径、浓度、化学组分、微观结构、形貌与其作为水基切削液添加剂的摩擦学与导热性能之间的关系,阐明其作用机理并建立物理模型。为纳米微粒切削液添加剂制备和性能研究提供材料基础和理论依据。
本项目通过设计合成了能够赋予纳米微粒良好水溶性和化学稳定性的表面修饰剂,采用原位表面修饰技术、二氧化硅包覆等方法制备水溶性铜及其复合材料纳米微粒(聚乙二醇单甲醚黄原酸修饰铜纳米微粒、辛烷基苯酚聚氧乙烯醚黄原酸修饰铜纳米微粒、聚丙烯酸钠修饰铜纳米微粒、Cu@SiO2复合纳米材料等),并实现了其粒径、组分及形貌的控制制备,利用修饰剂分子中的功能基团与纳米微粒的强(化学键)相互作用赋予纳米微粒良好的化学稳定性,利用修饰剂中的极性基团赋予纳米微粒良好的水溶性。从本质上解决纳米微粒在水基介质中的稳定分散问题。系统研究了其作为水基润滑添加剂的摩擦学行为,并与市场化的切削液进行摩擦学性能对比。考察了摩擦过程中修饰剂中活性元素以及Cu纳米微粒与摩擦表面组织结构、润滑材料/介质共同作用下的摩擦学行为规律。结果表明,在摩擦过程中铜纳米微粒在摩擦表面形成了沉积膜,在磨损严重的地方,相应的铜在该部位沉积量增加,具有修复作用,同时有摩擦化学反应生成的含有S等活性元素的反应膜,由此提高润滑剂的摩擦学性能。润滑膜的存在,有效降低摩擦接触压,避免直接的钢钢接触,从而改善水基润滑剂的摩擦学性能。. 所制备Cu@SiO2复合纳米微粒粒径均匀,分散性良好。DDP-Cu纳米微粒被二氧化硅层包覆后,二氧化硅层不仅可以有效地防止DDP-Cu纳米微粒氧化,使DDP-Cu纳米微粒的抗氧化性提高,而且还解决了DDP-Cu纳米微粒作为水基润滑添加剂时在水中的分散问题。. 在对Cu纳米微粒添加剂研究的基础上,尝试了水溶性纳米铜的宏量制备研究。所采用的工艺在放大过程中并没有因放大效应导致传热和传质不均匀,适合规模化制备。. 本项目发表论文48篇,其中SCI和EI收录论文30篇。授权发明专利2项。参与撰写学术专著1部。获得中国机械工业科学技术奖一等奖一项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
上转换纳米材料在光动力疗法中的研究进展
自组装短肽SciobioⅡ对关节软骨损伤修复过程的探究
拉应力下碳纳米管增强高分子基复合材料的应力分布
耗散粒子动力学中固壁模型对纳米颗粒 吸附模拟的影响
镍纳米微粒的控制合成及其作为菜籽油基酯类润滑油添加剂的摩擦学机制研究
液相分散法制备金属纳米微粒及其摩擦学性能
等离子体耦合球磨制备石墨烯基纳米复合润滑添加剂及其摩擦学性能
新型碳基纳米复合材料的设计、制备及其摩擦学性能研究