基于对称识别方法的贝叶斯probit模型稳健性研究

基本信息
批准号:11501287
项目类别:青年科学基金项目
资助金额:18.00
负责人:潘茂林
学科分类:
依托单位:南京大学
批准年份:2015
结题年份:2018
起止时间:2016-01-01 - 2018-12-31
项目状态: 已结题
项目参与者:王立洪,夏业茂,张瑞红
关键词:
离散选择模型贝叶斯计算probit模型数据扩充Gibbs抽样
结项摘要

Probit models are effective tools to deal with discrete choice data. Especially, recent advances in Bayesian computation have made probit models to be widely used in many areas, such as transportation, economics and marketing. However, parameter identification is an unavoidble topic to fit probit models. New studies find that Bayesian posterior predictions of the multinomial probit model based on traditional identification method are sensitive to the relabeling of alternatives. Then a new identification method, called symmetric identification, was proposed to solve such sensitivity problem. Based on symmetric identification, Baysian inferences on the multinomial probit model are robust enough. Due to the advent of ranking data and multiperiord choice data, the multinomial probit model can't effectively deal with them. Moreover, the existing probit models to deal with such data maily focus on the feasibility of model fitting, overlooking the reliability of predictions. Let alone the robust analysis of the corresponding models with respect to identification methods. Based on symmetric identification, this project mainly study on the robust analysis of Bayesian inferencs on two probit models: the censored rank-ordered probit model and the multiperiod probit model.

Probit模型是处理离散选择问题的一个有力工具,特别是近年来贝叶斯计算的快速发展,使得probit模型获得广泛应用。但是probit模型使用时存在参数识别问题。最新研究发现在用贝叶斯方法处理基于经典识别方法的多项probit模型时出现模型推断关于选择对象的标号敏感。接着有研究提出了对称识别方法,并基于此识别法建立多项probit模型以及进行贝叶斯分析,发现推断结果不依赖于标号变化,非常稳健。随着实际应用中排序数据、多期选择数据的出现,多项probit模型已不能满足需要,另外,目前关于这两种数据的probit模型研究主要集中在分析的便利性方面,而与识别方法相关的模型推断的稳健性还是空白。本项目主要对基于对称识别方法的删失排序probit模型和多期多项probit模型进行贝叶斯推断的稳健性研究,另外研究这两种模型在实际中的应用。

项目摘要

贝叶斯多项probit模型广泛用于分析规则的离散选择数据。最新研究发现由现有的模型所产生的后验预测对被选择对象的标号有敏感性,即不同的人为标号会导致不同的预测结果。对于规则数据,我们已经提出了全局对称识别模型有效解决了贝叶斯后验预测的敏感性问题。随着网络和计算机技术的发展,产生了大量的复杂选择数据,比如删失排序数据,多期多项选择数据。本项目的任务是利用对称识别方法建立稳健的贝叶斯probit模型来处理这些复杂的选择数据。对于删失排序数据,我们已经建好了贝叶斯删失排序probit模型,基于这个模型可以得到稳健的后验预测结果。另外,还将此模型用于分析香港赛马数据,发现模型给出预测与真实结果吻合很好。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

论大数据环境对情报学发展的影响

论大数据环境对情报学发展的影响

DOI:
发表时间:2017
3

监管的非对称性、盈余管理模式选择与证监会执法效率?

监管的非对称性、盈余管理模式选择与证监会执法效率?

DOI:
发表时间:2016
4

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
5

中国参与全球价值链的环境效应分析

中国参与全球价值链的环境效应分析

DOI:10.12062/cpre.20181019
发表时间:2019

潘茂林的其他基金

相似国自然基金

1

基于贝叶斯模型平均的多响应稳健优化设计研究

批准号:71702072
批准年份:2017
负责人:欧阳林寒
学科分类:G0108
资助金额:18.00
项目类别:青年科学基金项目
2

基于稀疏贝叶斯学习的稳健空时自适应处理研究

批准号:61401478
批准年份:2014
负责人:阳召成
学科分类:F0112
资助金额:27.00
项目类别:青年科学基金项目
3

激光点云数据处理中基于贝叶斯抽样一致性的模型参数稳健估计方法研究

批准号:41471360
批准年份:2014
负责人:康志忠
学科分类:D0113
资助金额:81.00
项目类别:面上项目
4

基于分层贝叶斯框架的青藏高原降水相态识别方法研究

批准号:41601065
批准年份:2016
负责人:马颖钊
学科分类:D0106
资助金额:14.00
项目类别:青年科学基金项目