In recent years, the diseases caused by foodborne pathogenic microorganisms increasingly threaten the health and safety of people and have emerged as major concerns of public. However, the current detection methods for pathogenic microorganisms are labor-intensive, time-consuming and have relatively low sensitivity with complicated operation procedures. Moreover, these methods can only detect one or few types of pathogenic microorganism for each testing and are not available for simultaneous detection of multiple types in a single sample. The purpose of this project is to develop a Biomedical Nano-Electro-Mechanical-System (BioNEMS) based biosensing platform integrated with aptamer-functionalized nanoporous alumina membrane which enables fast, sensitive and high-throughput analytical methods for simultaneous detection of multiple foodborne pathogenic microorganisms. The combination of chemically synthesized aptamer molecules as recognition elements with high specificity and stability, nanoporous membrane based electrochemical sensor with high sensitivity, and microfluidic chip for high-throughput analysis capability, provides a novel biosensing platform for foodborne pathogenic microorganism detection. The results of the proposed work are expected to advance the research for exploring nanoporous materials for biosensing application and developing a new hybrid BioNEMS based biosensing platform for foodborne pathogenic microorganism detection. Successful delivery of the proposed milestones will have a wide range of applications from food safety testing to environmental monitoring.
近年来,食源性病原微生物引起的疾病严重威胁着人类的健康和生命安全,日益成为一个重要的公共卫生问题,而现有的病原微生物检测方法,操作复杂、费时费力、灵敏度不高,每次只能检测一种或少量几种病原体,无法对同一来源的多种病原体进行同时检测。本项目将采用高灵敏性的氧化铝纳米孔膜电阻抗传感器,以体外合成的病原微生物适体分子作为识别元件,结合具有高通量特性的阵列化微流控芯片技术,通过对纳米孔膜适体传感器的电阻抗特性、传感响应机理及传感特性的研究,以期构建出基于纳米孔膜的生物微纳机电系统传感芯片用于多种病原微生物的同时、快速及高灵敏度的检测。项目立足于纳米孔膜传感器的灵敏性,并结合适体的特异性和稳定性,提供了一个新的具有高度特异性和检测灵敏度的传感机制,构建出的生物微纳机电系统检测芯片,为病原微生物的检测研究提供了一个新的传感技术平台,在食品安全和环境监测上有着重要的应用。
本项目旨在将病原微生物识别分子与纳米孔膜电阻抗传感器相结合,通过对纳米孔膜传感器的电阻抗特性、传感响应机理及传感特性的研究,构建出基于纳米孔膜的生物微纳机电系统传感芯片用于多种病原微生物的同时、快速及高灵敏度的检测。项目采用微纳米加工技术,制备出结合纳米孔膜阻抗传感器的微流体芯片,并对芯片进行表面改性,使得病原微生物识别分子与微纳芯片良好耦合。在对纳米孔膜电阻抗传感器信号进行测量的同时,通过有效的信号分析方法,对对阻抗特性、传感响应机理及传感特性进行研究,提供了一个新的具有高度特异性和检测灵敏度的传感机制,构建出的生物微纳机电系统检测芯片,并对多种微生物及微生物毒素进行高灵敏度和快速的检测。本项目为病原微生物的检测研究提供了一个新的传感技术平台,在食品安全和环境监测上有着重要的应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于分形L系统的水稻根系建模方法研究
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
基于胶体刻蚀的微纳锥孔结构及其在智能显色方面的应用
基于硅纳米线的纳机电谐振器检测技术研究
微区发光可调的上转换微纳结构的制备及其在高通量生物检测和防伪中的应用研究
多功能纳米材料的合成及其在食源性病原体即时检测中的应用